Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+10x-12=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-12\right)}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te 10 mō te b, me te -12 mō te c i te ture pūrua.
x=\frac{-10±14}{4}
Mahia ngā tātaitai.
x=1 x=-6
Whakaotia te whārite x=\frac{-10±14}{4} ina he tōrunga te ±, ina he tōraro te ±.
2\left(x-1\right)\left(x+6\right)\geq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-1\leq 0 x+6\leq 0
Kia ≥0 te otinga, me ≤0 tahi, me ≥0 tahi rānei te x-1 me te x+6. Whakaarohia te tauira ina he ≤0 tahi te x-1 me te x+6.
x\leq -6
Te otinga e whakaea i ngā koreōrite e rua ko x\leq -6.
x+6\geq 0 x-1\geq 0
Whakaarohia te tauira ina he ≥0 tahi te x-1 me te x+6.
x\geq 1
Te otinga e whakaea i ngā koreōrite e rua ko x\geq 1.
x\leq -6\text{; }x\geq 1
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.