Tīpoka ki ngā ihirangi matua
Whakaoti mō k (complex solution)
Tick mark Image
Whakaoti mō k
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+kx-6x-3k=0
Whakamahia te āhuatanga tohatoha hei whakarea te k-6 ki te x.
kx-6x-3k=-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx-3k=-2x^{2}+6x
Me tāpiri te 6x ki ngā taha e rua.
\left(x-3\right)k=-2x^{2}+6x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\left(x-3\right)k=6x-2x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(x-3\right)k}{x-3}=\frac{2x\left(3-x\right)}{x-3}
Whakawehea ngā taha e rua ki te -3+x.
k=\frac{2x\left(3-x\right)}{x-3}
Mā te whakawehe ki te -3+x ka wetekia te whakareanga ki te -3+x.
k=-2x
Whakawehe 2x\left(3-x\right) ki te -3+x.
2x^{2}+kx-6x-3k=0
Whakamahia te āhuatanga tohatoha hei whakarea te k-6 ki te x.
kx-6x-3k=-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx-3k=-2x^{2}+6x
Me tāpiri te 6x ki ngā taha e rua.
\left(x-3\right)k=-2x^{2}+6x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\left(x-3\right)k=6x-2x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(x-3\right)k}{x-3}=\frac{2x\left(3-x\right)}{x-3}
Whakawehea ngā taha e rua ki te -3+x.
k=\frac{2x\left(3-x\right)}{x-3}
Mā te whakawehe ki te -3+x ka wetekia te whakareanga ki te -3+x.
k=-2x
Whakawehe 2x\left(3-x\right) ki te -3+x.