Whakaoti mō k (complex solution)
\left\{\begin{matrix}\\k=-2x\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&x=3\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}\\k=-2x\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&x=3\end{matrix}\right.
Whakaoti mō x
x=-\frac{k}{2}
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+kx-6x-3k=0
Whakamahia te āhuatanga tohatoha hei whakarea te k-6 ki te x.
kx-6x-3k=-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx-3k=-2x^{2}+6x
Me tāpiri te 6x ki ngā taha e rua.
\left(x-3\right)k=-2x^{2}+6x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\left(x-3\right)k=6x-2x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(x-3\right)k}{x-3}=\frac{2x\left(3-x\right)}{x-3}
Whakawehea ngā taha e rua ki te -3+x.
k=\frac{2x\left(3-x\right)}{x-3}
Mā te whakawehe ki te -3+x ka wetekia te whakareanga ki te -3+x.
k=-2x
Whakawehe 2x\left(3-x\right) ki te -3+x.
2x^{2}+kx-6x-3k=0
Whakamahia te āhuatanga tohatoha hei whakarea te k-6 ki te x.
kx-6x-3k=-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx-3k=-2x^{2}+6x
Me tāpiri te 6x ki ngā taha e rua.
\left(x-3\right)k=-2x^{2}+6x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\left(x-3\right)k=6x-2x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(x-3\right)k}{x-3}=\frac{2x\left(3-x\right)}{x-3}
Whakawehea ngā taha e rua ki te -3+x.
k=\frac{2x\left(3-x\right)}{x-3}
Mā te whakawehe ki te -3+x ka wetekia te whakareanga ki te -3+x.
k=-2x
Whakawehe 2x\left(3-x\right) ki te -3+x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}