Whakaoti mō x (complex solution)
x=\frac{-3+7\sqrt{167}i}{32}\approx -0.09375+2.826872996i
x=\frac{-7\sqrt{167}i-3}{32}\approx -0.09375-2.826872996i
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+\frac{3}{8}x+16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{3}{8}±\sqrt{\left(\frac{3}{8}\right)^{2}-4\times 2\times 16}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, \frac{3}{8} mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-4\times 2\times 16}}{2\times 2}
Pūruatia \frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-8\times 16}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-128}}{2\times 2}
Whakareatia -8 ki te 16.
x=\frac{-\frac{3}{8}±\sqrt{-\frac{8183}{64}}}{2\times 2}
Tāpiri \frac{9}{64} ki te -128.
x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{2\times 2}
Tuhia te pūtakerua o te -\frac{8183}{64}.
x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4}
Whakareatia 2 ki te 2.
x=\frac{-3+7\sqrt{167}i}{4\times 8}
Nā, me whakaoti te whārite x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4} ina he tāpiri te ±. Tāpiri -\frac{3}{8} ki te \frac{7i\sqrt{167}}{8}.
x=\frac{-3+7\sqrt{167}i}{32}
Whakawehe \frac{-3+7i\sqrt{167}}{8} ki te 4.
x=\frac{-7\sqrt{167}i-3}{4\times 8}
Nā, me whakaoti te whārite x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4} ina he tango te ±. Tango \frac{7i\sqrt{167}}{8} mai i -\frac{3}{8}.
x=\frac{-7\sqrt{167}i-3}{32}
Whakawehe \frac{-3-7i\sqrt{167}}{8} ki te 4.
x=\frac{-3+7\sqrt{167}i}{32} x=\frac{-7\sqrt{167}i-3}{32}
Kua oti te whārite te whakatau.
2x^{2}+\frac{3}{8}x+16=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+\frac{3}{8}x+16-16=-16
Me tango 16 mai i ngā taha e rua o te whārite.
2x^{2}+\frac{3}{8}x=-16
Mā te tango i te 16 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}+\frac{3}{8}x}{2}=-\frac{16}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{\frac{3}{8}}{2}x=-\frac{16}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{3}{16}x=-\frac{16}{2}
Whakawehe \frac{3}{8} ki te 2.
x^{2}+\frac{3}{16}x=-8
Whakawehe -16 ki te 2.
x^{2}+\frac{3}{16}x+\left(\frac{3}{32}\right)^{2}=-8+\left(\frac{3}{32}\right)^{2}
Whakawehea te \frac{3}{16}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{32}. Nā, tāpiria te pūrua o te \frac{3}{32} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{16}x+\frac{9}{1024}=-8+\frac{9}{1024}
Pūruatia \frac{3}{32} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{16}x+\frac{9}{1024}=-\frac{8183}{1024}
Tāpiri -8 ki te \frac{9}{1024}.
\left(x+\frac{3}{32}\right)^{2}=-\frac{8183}{1024}
Tauwehea x^{2}+\frac{3}{16}x+\frac{9}{1024}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{32}\right)^{2}}=\sqrt{-\frac{8183}{1024}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{32}=\frac{7\sqrt{167}i}{32} x+\frac{3}{32}=-\frac{7\sqrt{167}i}{32}
Whakarūnātia.
x=\frac{-3+7\sqrt{167}i}{32} x=\frac{-7\sqrt{167}i-3}{32}
Me tango \frac{3}{32} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}