Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x\right)^{2}=\left(\sqrt{4x+24}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}x^{2}=\left(\sqrt{4x+24}\right)^{2}
Whakarohaina te \left(2x\right)^{2}.
4x^{2}=\left(\sqrt{4x+24}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}=4x+24
Tātaihia te \sqrt{4x+24} mā te pū o 2, kia riro ko 4x+24.
4x^{2}-4x=24
Tangohia te 4x mai i ngā taha e rua.
4x^{2}-4x-24=0
Tangohia te 24 mai i ngā taha e rua.
x^{2}-x-6=0
Whakawehea ngā taha e rua ki te 4.
a+b=-1 ab=1\left(-6\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-3 b=2
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Tuhia anō te x^{2}-x-6 hei \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-3\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-2
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+2=0.
2\times 3=\sqrt{4\times 3+24}
Whakakapia te 3 mō te x i te whārite 2x=\sqrt{4x+24}.
6=6
Whakarūnātia. Ko te uara x=3 kua ngata te whārite.
2\left(-2\right)=\sqrt{4\left(-2\right)+24}
Whakakapia te -2 mō te x i te whārite 2x=\sqrt{4x+24}.
-4=4
Whakarūnātia. Ko te uara x=-2 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=3
Ko te whārite 2x=\sqrt{4x+24} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}