Whakaoti mō x
x=-\frac{5}{6}\approx -0.833333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\times 2x-3=2\left(x-\frac{7}{3}\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
4x-3=2\left(x-\frac{7}{3}\right)
Whakareatia te 2 ki te 2, ka 4.
4x-3=2x+2\left(-\frac{7}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-\frac{7}{3}.
4x-3=2x+\frac{2\left(-7\right)}{3}
Tuhia te 2\left(-\frac{7}{3}\right) hei hautanga kotahi.
4x-3=2x+\frac{-14}{3}
Whakareatia te 2 ki te -7, ka -14.
4x-3=2x-\frac{14}{3}
Ka taea te hautanga \frac{-14}{3} te tuhi anō ko -\frac{14}{3} mā te tango i te tohu tōraro.
4x-3-2x=-\frac{14}{3}
Tangohia te 2x mai i ngā taha e rua.
2x-3=-\frac{14}{3}
Pahekotia te 4x me -2x, ka 2x.
2x=-\frac{14}{3}+3
Me tāpiri te 3 ki ngā taha e rua.
2x=-\frac{14}{3}+\frac{9}{3}
Me tahuri te 3 ki te hautau \frac{9}{3}.
2x=\frac{-14+9}{3}
Tā te mea he rite te tauraro o -\frac{14}{3} me \frac{9}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2x=-\frac{5}{3}
Tāpirihia te -14 ki te 9, ka -5.
x=\frac{-\frac{5}{3}}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{-5}{3\times 2}
Tuhia te \frac{-\frac{5}{3}}{2} hei hautanga kotahi.
x=\frac{-5}{6}
Whakareatia te 3 ki te 2, ka 6.
x=-\frac{5}{6}
Ka taea te hautanga \frac{-5}{6} te tuhi anō ko -\frac{5}{6} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}