2 x + 40 \% = 72
Whakaoti mō x
x = \frac{179}{5} = 35\frac{4}{5} = 35.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+\frac{2}{5}=72
Whakahekea te hautanga \frac{40}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
2x=72-\frac{2}{5}
Tangohia te \frac{2}{5} mai i ngā taha e rua.
2x=\frac{360}{5}-\frac{2}{5}
Me tahuri te 72 ki te hautau \frac{360}{5}.
2x=\frac{360-2}{5}
Tā te mea he rite te tauraro o \frac{360}{5} me \frac{2}{5}, me tango rāua mā te tango i ō raua taurunga.
2x=\frac{358}{5}
Tangohia te 2 i te 360, ka 358.
x=\frac{\frac{358}{5}}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{358}{5\times 2}
Tuhia te \frac{\frac{358}{5}}{2} hei hautanga kotahi.
x=\frac{358}{10}
Whakareatia te 5 ki te 2, ka 10.
x=\frac{179}{5}
Whakahekea te hautanga \frac{358}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}