Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2x+3\right)\left(x+1\right)}{x+1}+\frac{2}{x+1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2x+3 ki te \frac{x+1}{x+1}.
\frac{\left(2x+3\right)\left(x+1\right)+2}{x+1}
Tā te mea he rite te tauraro o \frac{\left(2x+3\right)\left(x+1\right)}{x+1} me \frac{2}{x+1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x^{2}+2x+3x+3+2}{x+1}
Mahia ngā whakarea i roto o \left(2x+3\right)\left(x+1\right)+2.
\frac{2x^{2}+5x+5}{x+1}
Whakakotahitia ngā kupu rite i 2x^{2}+2x+3x+3+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(2x+3\right)\left(x+1\right)}{x+1}+\frac{2}{x+1})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2x+3 ki te \frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(2x+3\right)\left(x+1\right)+2}{x+1})
Tā te mea he rite te tauraro o \frac{\left(2x+3\right)\left(x+1\right)}{x+1} me \frac{2}{x+1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}+2x+3x+3+2}{x+1})
Mahia ngā whakarea i roto o \left(2x+3\right)\left(x+1\right)+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}+5x+5}{x+1})
Whakakotahitia ngā kupu rite i 2x^{2}+2x+3x+3+2.
\frac{\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+5x^{1}+5)-\left(2x^{2}+5x^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)}{\left(x^{1}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+1\right)\left(2\times 2x^{2-1}+5x^{1-1}\right)-\left(2x^{2}+5x^{1}+5\right)x^{1-1}}{\left(x^{1}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+1\right)\left(4x^{1}+5x^{0}\right)-\left(2x^{2}+5x^{1}+5\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Whakarūnātia.
\frac{x^{1}\times 4x^{1}+x^{1}\times 5x^{0}+4x^{1}+5x^{0}-\left(2x^{2}+5x^{1}+5\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Whakareatia x^{1}+1 ki te 4x^{1}+5x^{0}.
\frac{x^{1}\times 4x^{1}+x^{1}\times 5x^{0}+4x^{1}+5x^{0}-\left(2x^{2}x^{0}+5x^{1}x^{0}+5x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Whakareatia 2x^{2}+5x^{1}+5 ki te x^{0}.
\frac{4x^{1+1}+5x^{1}+4x^{1}+5x^{0}-\left(2x^{2}+5x^{1}+5x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{4x^{2}+5x^{1}+4x^{1}+5x^{0}-\left(2x^{2}+5x^{1}+5x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Whakarūnātia.
\frac{2x^{2}+4x^{1}}{\left(x^{1}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{2x^{2}+4x}{\left(x+1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.