Whakaoti mō x (complex solution)
x\in \mathrm{C}
Whakaoti mō x
x\in \mathrm{R}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+1=3\left(x-2\right)+7
Pahekotia te 2x me x, ka 3x.
3x+1=3x-6+7
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x+1=3x+1
Tāpirihia te -6 ki te 7, ka 1.
3x+1-3x=1
Tangohia te 3x mai i ngā taha e rua.
1=1
Pahekotia te 3x me -3x, ka 0.
\text{true}
Whakatauritea te 1 me te 1.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
3x+1=3\left(x-2\right)+7
Pahekotia te 2x me x, ka 3x.
3x+1=3x-6+7
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x+1=3x+1
Tāpirihia te -6 ki te 7, ka 1.
3x+1-3x=1
Tangohia te 3x mai i ngā taha e rua.
1=1
Pahekotia te 3x me -3x, ka 0.
\text{true}
Whakatauritea te 1 me te 1.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}