Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2xx+3=4x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
2x^{2}+3=4x
Whakareatia te x ki te x, ka x^{2}.
2x^{2}+3-4x=0
Tangohia te 4x mai i ngā taha e rua.
2x^{2}-4x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 3}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 3}}{2\times 2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 3}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-4\right)±\sqrt{16-24}}{2\times 2}
Whakareatia -8 ki te 3.
x=\frac{-\left(-4\right)±\sqrt{-8}}{2\times 2}
Tāpiri 16 ki te -24.
x=\frac{-\left(-4\right)±2\sqrt{2}i}{2\times 2}
Tuhia te pūtakerua o te -8.
x=\frac{4±2\sqrt{2}i}{2\times 2}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{2}i}{4}
Whakareatia 2 ki te 2.
x=\frac{4+2\sqrt{2}i}{4}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{2}i}{4} ina he tāpiri te ±. Tāpiri 4 ki te 2i\sqrt{2}.
x=\frac{\sqrt{2}i}{2}+1
Whakawehe 4+2i\sqrt{2} ki te 4.
x=\frac{-2\sqrt{2}i+4}{4}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{2}i}{4} ina he tango te ±. Tango 2i\sqrt{2} mai i 4.
x=-\frac{\sqrt{2}i}{2}+1
Whakawehe 4-2i\sqrt{2} ki te 4.
x=\frac{\sqrt{2}i}{2}+1 x=-\frac{\sqrt{2}i}{2}+1
Kua oti te whārite te whakatau.
2xx+3=4x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
2x^{2}+3=4x
Whakareatia te x ki te x, ka x^{2}.
2x^{2}+3-4x=0
Tangohia te 4x mai i ngā taha e rua.
2x^{2}-4x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{2x^{2}-4x}{2}=-\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-2x=-\frac{3}{2}
Whakawehe -4 ki te 2.
x^{2}-2x+1=-\frac{3}{2}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=-\frac{1}{2}
Tāpiri -\frac{3}{2} ki te 1.
\left(x-1\right)^{2}=-\frac{1}{2}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{1}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{\sqrt{2}i}{2} x-1=-\frac{\sqrt{2}i}{2}
Whakarūnātia.
x=\frac{\sqrt{2}i}{2}+1 x=-\frac{\sqrt{2}i}{2}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.