Whakaoti mō w
w=-\frac{1}{2}=-0.5
w=6
Tohaina
Kua tāruatia ki te papatopenga
2w^{2}-11w-6=0
Tangohia te 6 mai i ngā taha e rua.
a+b=-11 ab=2\left(-6\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2w^{2}+aw+bw-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-12 b=1
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(2w^{2}-12w\right)+\left(w-6\right)
Tuhia anō te 2w^{2}-11w-6 hei \left(2w^{2}-12w\right)+\left(w-6\right).
2w\left(w-6\right)+w-6
Whakatauwehea atu 2w i te 2w^{2}-12w.
\left(w-6\right)\left(2w+1\right)
Whakatauwehea atu te kīanga pātahi w-6 mā te whakamahi i te āhuatanga tātai tohatoha.
w=6 w=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te w-6=0 me te 2w+1=0.
2w^{2}-11w=6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
2w^{2}-11w-6=6-6
Me tango 6 mai i ngā taha e rua o te whārite.
2w^{2}-11w-6=0
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
w=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -11 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-6\right)}}{2\times 2}
Pūrua -11.
w=\frac{-\left(-11\right)±\sqrt{121-8\left(-6\right)}}{2\times 2}
Whakareatia -4 ki te 2.
w=\frac{-\left(-11\right)±\sqrt{121+48}}{2\times 2}
Whakareatia -8 ki te -6.
w=\frac{-\left(-11\right)±\sqrt{169}}{2\times 2}
Tāpiri 121 ki te 48.
w=\frac{-\left(-11\right)±13}{2\times 2}
Tuhia te pūtakerua o te 169.
w=\frac{11±13}{2\times 2}
Ko te tauaro o -11 ko 11.
w=\frac{11±13}{4}
Whakareatia 2 ki te 2.
w=\frac{24}{4}
Nā, me whakaoti te whārite w=\frac{11±13}{4} ina he tāpiri te ±. Tāpiri 11 ki te 13.
w=6
Whakawehe 24 ki te 4.
w=-\frac{2}{4}
Nā, me whakaoti te whārite w=\frac{11±13}{4} ina he tango te ±. Tango 13 mai i 11.
w=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
w=6 w=-\frac{1}{2}
Kua oti te whārite te whakatau.
2w^{2}-11w=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2w^{2}-11w}{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
w^{2}-\frac{11}{2}w=\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
w^{2}-\frac{11}{2}w=3
Whakawehe 6 ki te 2.
w^{2}-\frac{11}{2}w+\left(-\frac{11}{4}\right)^{2}=3+\left(-\frac{11}{4}\right)^{2}
Whakawehea te -\frac{11}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{4}. Nā, tāpiria te pūrua o te -\frac{11}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}-\frac{11}{2}w+\frac{121}{16}=3+\frac{121}{16}
Pūruatia -\frac{11}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}-\frac{11}{2}w+\frac{121}{16}=\frac{169}{16}
Tāpiri 3 ki te \frac{121}{16}.
\left(w-\frac{11}{4}\right)^{2}=\frac{169}{16}
Tauwehea w^{2}-\frac{11}{2}w+\frac{121}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{11}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w-\frac{11}{4}=\frac{13}{4} w-\frac{11}{4}=-\frac{13}{4}
Whakarūnātia.
w=6 w=-\frac{1}{2}
Me tāpiri \frac{11}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}