Whakaoti mō w
w = -\frac{51}{2} = -25\frac{1}{2} = -25.5
w=25
Tohaina
Kua tāruatia ki te papatopenga
a+b=1 ab=2\left(-1275\right)=-2550
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2w^{2}+aw+bw-1275. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,2550 -2,1275 -3,850 -5,510 -6,425 -10,255 -15,170 -17,150 -25,102 -30,85 -34,75 -50,51
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -2550.
-1+2550=2549 -2+1275=1273 -3+850=847 -5+510=505 -6+425=419 -10+255=245 -15+170=155 -17+150=133 -25+102=77 -30+85=55 -34+75=41 -50+51=1
Tātaihia te tapeke mō ia takirua.
a=-50 b=51
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(2w^{2}-50w\right)+\left(51w-1275\right)
Tuhia anō te 2w^{2}+w-1275 hei \left(2w^{2}-50w\right)+\left(51w-1275\right).
2w\left(w-25\right)+51\left(w-25\right)
Tauwehea te 2w i te tuatahi me te 51 i te rōpū tuarua.
\left(w-25\right)\left(2w+51\right)
Whakatauwehea atu te kīanga pātahi w-25 mā te whakamahi i te āhuatanga tātai tohatoha.
w=25 w=-\frac{51}{2}
Hei kimi otinga whārite, me whakaoti te w-25=0 me te 2w+51=0.
2w^{2}+w-1275=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1275\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 1 mō b, me -1275 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-1±\sqrt{1-4\times 2\left(-1275\right)}}{2\times 2}
Pūrua 1.
w=\frac{-1±\sqrt{1-8\left(-1275\right)}}{2\times 2}
Whakareatia -4 ki te 2.
w=\frac{-1±\sqrt{1+10200}}{2\times 2}
Whakareatia -8 ki te -1275.
w=\frac{-1±\sqrt{10201}}{2\times 2}
Tāpiri 1 ki te 10200.
w=\frac{-1±101}{2\times 2}
Tuhia te pūtakerua o te 10201.
w=\frac{-1±101}{4}
Whakareatia 2 ki te 2.
w=\frac{100}{4}
Nā, me whakaoti te whārite w=\frac{-1±101}{4} ina he tāpiri te ±. Tāpiri -1 ki te 101.
w=25
Whakawehe 100 ki te 4.
w=-\frac{102}{4}
Nā, me whakaoti te whārite w=\frac{-1±101}{4} ina he tango te ±. Tango 101 mai i -1.
w=-\frac{51}{2}
Whakahekea te hautanga \frac{-102}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
w=25 w=-\frac{51}{2}
Kua oti te whārite te whakatau.
2w^{2}+w-1275=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2w^{2}+w-1275-\left(-1275\right)=-\left(-1275\right)
Me tāpiri 1275 ki ngā taha e rua o te whārite.
2w^{2}+w=-\left(-1275\right)
Mā te tango i te -1275 i a ia ake anō ka toe ko te 0.
2w^{2}+w=1275
Tango -1275 mai i 0.
\frac{2w^{2}+w}{2}=\frac{1275}{2}
Whakawehea ngā taha e rua ki te 2.
w^{2}+\frac{1}{2}w=\frac{1275}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
w^{2}+\frac{1}{2}w+\left(\frac{1}{4}\right)^{2}=\frac{1275}{2}+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+\frac{1}{2}w+\frac{1}{16}=\frac{1275}{2}+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}+\frac{1}{2}w+\frac{1}{16}=\frac{10201}{16}
Tāpiri \frac{1275}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(w+\frac{1}{4}\right)^{2}=\frac{10201}{16}
Tauwehea w^{2}+\frac{1}{2}w+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{1}{4}\right)^{2}}=\sqrt{\frac{10201}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+\frac{1}{4}=\frac{101}{4} w+\frac{1}{4}=-\frac{101}{4}
Whakarūnātia.
w=25 w=-\frac{51}{2}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}