Whakaoti mō v
v=7
v=0
Tohaina
Kua tāruatia ki te papatopenga
2v^{2}-14v=5v\left(v-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2v ki te v-7.
2v^{2}-14v=5v^{2}-35v
Whakamahia te āhuatanga tohatoha hei whakarea te 5v ki te v-7.
2v^{2}-14v-5v^{2}=-35v
Tangohia te 5v^{2} mai i ngā taha e rua.
-3v^{2}-14v=-35v
Pahekotia te 2v^{2} me -5v^{2}, ka -3v^{2}.
-3v^{2}-14v+35v=0
Me tāpiri te 35v ki ngā taha e rua.
-3v^{2}+21v=0
Pahekotia te -14v me 35v, ka 21v.
v\left(-3v+21\right)=0
Tauwehea te v.
v=0 v=7
Hei kimi otinga whārite, me whakaoti te v=0 me te -3v+21=0.
2v^{2}-14v=5v\left(v-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2v ki te v-7.
2v^{2}-14v=5v^{2}-35v
Whakamahia te āhuatanga tohatoha hei whakarea te 5v ki te v-7.
2v^{2}-14v-5v^{2}=-35v
Tangohia te 5v^{2} mai i ngā taha e rua.
-3v^{2}-14v=-35v
Pahekotia te 2v^{2} me -5v^{2}, ka -3v^{2}.
-3v^{2}-14v+35v=0
Me tāpiri te 35v ki ngā taha e rua.
-3v^{2}+21v=0
Pahekotia te -14v me 35v, ka 21v.
v=\frac{-21±\sqrt{21^{2}}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 21 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-21±21}{2\left(-3\right)}
Tuhia te pūtakerua o te 21^{2}.
v=\frac{-21±21}{-6}
Whakareatia 2 ki te -3.
v=\frac{0}{-6}
Nā, me whakaoti te whārite v=\frac{-21±21}{-6} ina he tāpiri te ±. Tāpiri -21 ki te 21.
v=0
Whakawehe 0 ki te -6.
v=-\frac{42}{-6}
Nā, me whakaoti te whārite v=\frac{-21±21}{-6} ina he tango te ±. Tango 21 mai i -21.
v=7
Whakawehe -42 ki te -6.
v=0 v=7
Kua oti te whārite te whakatau.
2v^{2}-14v=5v\left(v-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2v ki te v-7.
2v^{2}-14v=5v^{2}-35v
Whakamahia te āhuatanga tohatoha hei whakarea te 5v ki te v-7.
2v^{2}-14v-5v^{2}=-35v
Tangohia te 5v^{2} mai i ngā taha e rua.
-3v^{2}-14v=-35v
Pahekotia te 2v^{2} me -5v^{2}, ka -3v^{2}.
-3v^{2}-14v+35v=0
Me tāpiri te 35v ki ngā taha e rua.
-3v^{2}+21v=0
Pahekotia te -14v me 35v, ka 21v.
\frac{-3v^{2}+21v}{-3}=\frac{0}{-3}
Whakawehea ngā taha e rua ki te -3.
v^{2}+\frac{21}{-3}v=\frac{0}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
v^{2}-7v=\frac{0}{-3}
Whakawehe 21 ki te -3.
v^{2}-7v=0
Whakawehe 0 ki te -3.
v^{2}-7v+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}-7v+\frac{49}{4}=\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(v-\frac{7}{2}\right)^{2}=\frac{49}{4}
Tauwehea v^{2}-7v+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v-\frac{7}{2}=\frac{7}{2} v-\frac{7}{2}=-\frac{7}{2}
Whakarūnātia.
v=7 v=0
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}