Whakaoti mō v
v=5
v=1
Tohaina
Kua tāruatia ki te papatopenga
\left(2v\right)^{2}=\left(\sqrt{5v^{2}-6v+5}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}v^{2}=\left(\sqrt{5v^{2}-6v+5}\right)^{2}
Whakarohaina te \left(2v\right)^{2}.
4v^{2}=\left(\sqrt{5v^{2}-6v+5}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4v^{2}=5v^{2}-6v+5
Tātaihia te \sqrt{5v^{2}-6v+5} mā te pū o 2, kia riro ko 5v^{2}-6v+5.
4v^{2}-5v^{2}=-6v+5
Tangohia te 5v^{2} mai i ngā taha e rua.
-v^{2}=-6v+5
Pahekotia te 4v^{2} me -5v^{2}, ka -v^{2}.
-v^{2}+6v=5
Me tāpiri te 6v ki ngā taha e rua.
-v^{2}+6v-5=0
Tangohia te 5 mai i ngā taha e rua.
a+b=6 ab=-\left(-5\right)=5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -v^{2}+av+bv-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=5 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-v^{2}+5v\right)+\left(v-5\right)
Tuhia anō te -v^{2}+6v-5 hei \left(-v^{2}+5v\right)+\left(v-5\right).
-v\left(v-5\right)+v-5
Whakatauwehea atu -v i te -v^{2}+5v.
\left(v-5\right)\left(-v+1\right)
Whakatauwehea atu te kīanga pātahi v-5 mā te whakamahi i te āhuatanga tātai tohatoha.
v=5 v=1
Hei kimi otinga whārite, me whakaoti te v-5=0 me te -v+1=0.
2\times 5=\sqrt{5\times 5^{2}-6\times 5+5}
Whakakapia te 5 mō te v i te whārite 2v=\sqrt{5v^{2}-6v+5}.
10=10
Whakarūnātia. Ko te uara v=5 kua ngata te whārite.
2\times 1=\sqrt{5\times 1^{2}-6+5}
Whakakapia te 1 mō te v i te whārite 2v=\sqrt{5v^{2}-6v+5}.
2=2
Whakarūnātia. Ko te uara v=1 kua ngata te whārite.
v=5 v=1
Rārangihia ngā rongoā katoa o 2v=\sqrt{5v^{2}-6v+5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}