Tauwehe
2\left(u-15\right)\left(u-2\right)
Aromātai
2\left(u-15\right)\left(u-2\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(u^{2}-17u+30\right)
Tauwehea te 2.
a+b=-17 ab=1\times 30=30
Whakaarohia te u^{2}-17u+30. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei u^{2}+au+bu+30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-30 -2,-15 -3,-10 -5,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Tātaihia te tapeke mō ia takirua.
a=-15 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -17.
\left(u^{2}-15u\right)+\left(-2u+30\right)
Tuhia anō te u^{2}-17u+30 hei \left(u^{2}-15u\right)+\left(-2u+30\right).
u\left(u-15\right)-2\left(u-15\right)
Tauwehea te u i te tuatahi me te -2 i te rōpū tuarua.
\left(u-15\right)\left(u-2\right)
Whakatauwehea atu te kīanga pātahi u-15 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(u-15\right)\left(u-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
2u^{2}-34u+60=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
u=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 60}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 60}}{2\times 2}
Pūrua -34.
u=\frac{-\left(-34\right)±\sqrt{1156-8\times 60}}{2\times 2}
Whakareatia -4 ki te 2.
u=\frac{-\left(-34\right)±\sqrt{1156-480}}{2\times 2}
Whakareatia -8 ki te 60.
u=\frac{-\left(-34\right)±\sqrt{676}}{2\times 2}
Tāpiri 1156 ki te -480.
u=\frac{-\left(-34\right)±26}{2\times 2}
Tuhia te pūtakerua o te 676.
u=\frac{34±26}{2\times 2}
Ko te tauaro o -34 ko 34.
u=\frac{34±26}{4}
Whakareatia 2 ki te 2.
u=\frac{60}{4}
Nā, me whakaoti te whārite u=\frac{34±26}{4} ina he tāpiri te ±. Tāpiri 34 ki te 26.
u=15
Whakawehe 60 ki te 4.
u=\frac{8}{4}
Nā, me whakaoti te whārite u=\frac{34±26}{4} ina he tango te ±. Tango 26 mai i 34.
u=2
Whakawehe 8 ki te 4.
2u^{2}-34u+60=2\left(u-15\right)\left(u-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 15 mō te x_{1} me te 2 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}