Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2t-\left(-5\right)=t^{2}
Tangohia te -5 mai i ngā taha e rua.
2t+5=t^{2}
Ko te tauaro o -5 ko 5.
2t+5-t^{2}=0
Tangohia te t^{2} mai i ngā taha e rua.
-t^{2}+2t+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 2 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±\sqrt{4-4\left(-1\right)\times 5}}{2\left(-1\right)}
Pūrua 2.
t=\frac{-2±\sqrt{4+4\times 5}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
t=\frac{-2±\sqrt{4+20}}{2\left(-1\right)}
Whakareatia 4 ki te 5.
t=\frac{-2±\sqrt{24}}{2\left(-1\right)}
Tāpiri 4 ki te 20.
t=\frac{-2±2\sqrt{6}}{2\left(-1\right)}
Tuhia te pūtakerua o te 24.
t=\frac{-2±2\sqrt{6}}{-2}
Whakareatia 2 ki te -1.
t=\frac{2\sqrt{6}-2}{-2}
Nā, me whakaoti te whārite t=\frac{-2±2\sqrt{6}}{-2} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{6}.
t=1-\sqrt{6}
Whakawehe -2+2\sqrt{6} ki te -2.
t=\frac{-2\sqrt{6}-2}{-2}
Nā, me whakaoti te whārite t=\frac{-2±2\sqrt{6}}{-2} ina he tango te ±. Tango 2\sqrt{6} mai i -2.
t=\sqrt{6}+1
Whakawehe -2-2\sqrt{6} ki te -2.
t=1-\sqrt{6} t=\sqrt{6}+1
Kua oti te whārite te whakatau.
2t-t^{2}=-5
Tangohia te t^{2} mai i ngā taha e rua.
-t^{2}+2t=-5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-t^{2}+2t}{-1}=-\frac{5}{-1}
Whakawehea ngā taha e rua ki te -1.
t^{2}+\frac{2}{-1}t=-\frac{5}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
t^{2}-2t=-\frac{5}{-1}
Whakawehe 2 ki te -1.
t^{2}-2t=5
Whakawehe -5 ki te -1.
t^{2}-2t+1=5+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-2t+1=6
Tāpiri 5 ki te 1.
\left(t-1\right)^{2}=6
Tauwehea t^{2}-2t+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-1=\sqrt{6} t-1=-\sqrt{6}
Whakarūnātia.
t=\sqrt{6}+1 t=1-\sqrt{6}
Me tāpiri 1 ki ngā taha e rua o te whārite.