Tauwehe
2s\left(s-3\right)
Aromātai
2s\left(s-3\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(s^{2}-3s\right)
Tauwehea te 2.
s\left(s-3\right)
Whakaarohia te s^{2}-3s. Tauwehea te s.
2s\left(s-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
2s^{2}-6s=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-\left(-6\right)±6}{2\times 2}
Tuhia te pūtakerua o te \left(-6\right)^{2}.
s=\frac{6±6}{2\times 2}
Ko te tauaro o -6 ko 6.
s=\frac{6±6}{4}
Whakareatia 2 ki te 2.
s=\frac{12}{4}
Nā, me whakaoti te whārite s=\frac{6±6}{4} ina he tāpiri te ±. Tāpiri 6 ki te 6.
s=3
Whakawehe 12 ki te 4.
s=\frac{0}{4}
Nā, me whakaoti te whārite s=\frac{6±6}{4} ina he tango te ±. Tango 6 mai i 6.
s=0
Whakawehe 0 ki te 4.
2s^{2}-6s=2\left(s-3\right)s
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te 0 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}