Tauwehe
\left(s-7\right)\left(2s+1\right)
Aromātai
\left(s-7\right)\left(2s+1\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-13 ab=2\left(-7\right)=-14
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2s^{2}+as+bs-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-14 2,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -14.
1-14=-13 2-7=-5
Tātaihia te tapeke mō ia takirua.
a=-14 b=1
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(2s^{2}-14s\right)+\left(s-7\right)
Tuhia anō te 2s^{2}-13s-7 hei \left(2s^{2}-14s\right)+\left(s-7\right).
2s\left(s-7\right)+s-7
Whakatauwehea atu 2s i te 2s^{2}-14s.
\left(s-7\right)\left(2s+1\right)
Whakatauwehea atu te kīanga pātahi s-7 mā te whakamahi i te āhuatanga tātai tohatoha.
2s^{2}-13s-7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-\left(-13\right)±\sqrt{169-4\times 2\left(-7\right)}}{2\times 2}
Pūrua -13.
s=\frac{-\left(-13\right)±\sqrt{169-8\left(-7\right)}}{2\times 2}
Whakareatia -4 ki te 2.
s=\frac{-\left(-13\right)±\sqrt{169+56}}{2\times 2}
Whakareatia -8 ki te -7.
s=\frac{-\left(-13\right)±\sqrt{225}}{2\times 2}
Tāpiri 169 ki te 56.
s=\frac{-\left(-13\right)±15}{2\times 2}
Tuhia te pūtakerua o te 225.
s=\frac{13±15}{2\times 2}
Ko te tauaro o -13 ko 13.
s=\frac{13±15}{4}
Whakareatia 2 ki te 2.
s=\frac{28}{4}
Nā, me whakaoti te whārite s=\frac{13±15}{4} ina he tāpiri te ±. Tāpiri 13 ki te 15.
s=7
Whakawehe 28 ki te 4.
s=-\frac{2}{4}
Nā, me whakaoti te whārite s=\frac{13±15}{4} ina he tango te ±. Tango 15 mai i 13.
s=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2s^{2}-13s-7=2\left(s-7\right)\left(s-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
2s^{2}-13s-7=2\left(s-7\right)\left(s+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2s^{2}-13s-7=2\left(s-7\right)\times \frac{2s+1}{2}
Tāpiri \frac{1}{2} ki te s mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2s^{2}-13s-7=\left(s-7\right)\left(2s+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}