Tīpoka ki ngā ihirangi matua
Whakaoti mō s
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2s^{2}=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
s^{2}=\frac{-4}{2}
Whakawehea ngā taha e rua ki te 2.
s^{2}=-2
Whakawehea te -4 ki te 2, kia riro ko -2.
s=\sqrt{2}i s=-\sqrt{2}i
Kua oti te whārite te whakatau.
2s^{2}+4=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
s=\frac{0±\sqrt{0^{2}-4\times 2\times 4}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 2\times 4}}{2\times 2}
Pūrua 0.
s=\frac{0±\sqrt{-8\times 4}}{2\times 2}
Whakareatia -4 ki te 2.
s=\frac{0±\sqrt{-32}}{2\times 2}
Whakareatia -8 ki te 4.
s=\frac{0±4\sqrt{2}i}{2\times 2}
Tuhia te pūtakerua o te -32.
s=\frac{0±4\sqrt{2}i}{4}
Whakareatia 2 ki te 2.
s=\sqrt{2}i
Nā, me whakaoti te whārite s=\frac{0±4\sqrt{2}i}{4} ina he tāpiri te ±.
s=-\sqrt{2}i
Nā, me whakaoti te whārite s=\frac{0±4\sqrt{2}i}{4} ina he tango te ±.
s=\sqrt{2}i s=-\sqrt{2}i
Kua oti te whārite te whakatau.