Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-1 ab=2\left(-3\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2r^{2}+ar+br-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-3 b=2
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(2r^{2}-3r\right)+\left(2r-3\right)
Tuhia anō te 2r^{2}-r-3 hei \left(2r^{2}-3r\right)+\left(2r-3\right).
r\left(2r-3\right)+2r-3
Whakatauwehea atu r i te 2r^{2}-3r.
\left(2r-3\right)\left(r+1\right)
Whakatauwehea atu te kīanga pātahi 2r-3 mā te whakamahi i te āhuatanga tātai tohatoha.
r=\frac{3}{2} r=-1
Hei kimi otinga whārite, me whakaoti te 2r-3=0 me te r+1=0.
2r^{2}-r-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -1 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
Whakareatia -4 ki te 2.
r=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
Whakareatia -8 ki te -3.
r=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
Tāpiri 1 ki te 24.
r=\frac{-\left(-1\right)±5}{2\times 2}
Tuhia te pūtakerua o te 25.
r=\frac{1±5}{2\times 2}
Ko te tauaro o -1 ko 1.
r=\frac{1±5}{4}
Whakareatia 2 ki te 2.
r=\frac{6}{4}
Nā, me whakaoti te whārite r=\frac{1±5}{4} ina he tāpiri te ±. Tāpiri 1 ki te 5.
r=\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
r=-\frac{4}{4}
Nā, me whakaoti te whārite r=\frac{1±5}{4} ina he tango te ±. Tango 5 mai i 1.
r=-1
Whakawehe -4 ki te 4.
r=\frac{3}{2} r=-1
Kua oti te whārite te whakatau.
2r^{2}-r-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2r^{2}-r-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
2r^{2}-r=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
2r^{2}-r=3
Tango -3 mai i 0.
\frac{2r^{2}-r}{2}=\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
r^{2}-\frac{1}{2}r=\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
r^{2}-\frac{1}{2}r+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-\frac{1}{2}r+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
r^{2}-\frac{1}{2}r+\frac{1}{16}=\frac{25}{16}
Tāpiri \frac{3}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(r-\frac{1}{4}\right)^{2}=\frac{25}{16}
Tauwehea r^{2}-\frac{1}{2}r+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-\frac{1}{4}=\frac{5}{4} r-\frac{1}{4}=-\frac{5}{4}
Whakarūnātia.
r=\frac{3}{2} r=-1
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.