Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-5 ab=2\times 2=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2r^{2}+ar+br+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(2r^{2}-4r\right)+\left(-r+2\right)
Tuhia anō te 2r^{2}-5r+2 hei \left(2r^{2}-4r\right)+\left(-r+2\right).
2r\left(r-2\right)-\left(r-2\right)
Tauwehea te 2r i te tuatahi me te -1 i te rōpū tuarua.
\left(r-2\right)\left(2r-1\right)
Whakatauwehea atu te kīanga pātahi r-2 mā te whakamahi i te āhuatanga tātai tohatoha.
r=2 r=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te r-2=0 me te 2r-1=0.
2r^{2}-5r+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -5 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-5\right)±\sqrt{25-4\times 2\times 2}}{2\times 2}
Pūrua -5.
r=\frac{-\left(-5\right)±\sqrt{25-8\times 2}}{2\times 2}
Whakareatia -4 ki te 2.
r=\frac{-\left(-5\right)±\sqrt{25-16}}{2\times 2}
Whakareatia -8 ki te 2.
r=\frac{-\left(-5\right)±\sqrt{9}}{2\times 2}
Tāpiri 25 ki te -16.
r=\frac{-\left(-5\right)±3}{2\times 2}
Tuhia te pūtakerua o te 9.
r=\frac{5±3}{2\times 2}
Ko te tauaro o -5 ko 5.
r=\frac{5±3}{4}
Whakareatia 2 ki te 2.
r=\frac{8}{4}
Nā, me whakaoti te whārite r=\frac{5±3}{4} ina he tāpiri te ±. Tāpiri 5 ki te 3.
r=2
Whakawehe 8 ki te 4.
r=\frac{2}{4}
Nā, me whakaoti te whārite r=\frac{5±3}{4} ina he tango te ±. Tango 3 mai i 5.
r=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
r=2 r=\frac{1}{2}
Kua oti te whārite te whakatau.
2r^{2}-5r+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2r^{2}-5r+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
2r^{2}-5r=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{2r^{2}-5r}{2}=-\frac{2}{2}
Whakawehea ngā taha e rua ki te 2.
r^{2}-\frac{5}{2}r=-\frac{2}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
r^{2}-\frac{5}{2}r=-1
Whakawehe -2 ki te 2.
r^{2}-\frac{5}{2}r+\left(-\frac{5}{4}\right)^{2}=-1+\left(-\frac{5}{4}\right)^{2}
Whakawehea te -\frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{4}. Nā, tāpiria te pūrua o te -\frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-\frac{5}{2}r+\frac{25}{16}=-1+\frac{25}{16}
Pūruatia -\frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
r^{2}-\frac{5}{2}r+\frac{25}{16}=\frac{9}{16}
Tāpiri -1 ki te \frac{25}{16}.
\left(r-\frac{5}{4}\right)^{2}=\frac{9}{16}
Tauwehea r^{2}-\frac{5}{2}r+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-\frac{5}{4}=\frac{3}{4} r-\frac{5}{4}=-\frac{3}{4}
Whakarūnātia.
r=2 r=\frac{1}{2}
Me tāpiri \frac{5}{4} ki ngā taha e rua o te whārite.