Whakaoti mō r
r=-2
r=-\frac{1}{2}=-0.5
Tohaina
Kua tāruatia ki te papatopenga
a+b=5 ab=2\times 2=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2r^{2}+ar+br+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=1 b=4
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(2r^{2}+r\right)+\left(4r+2\right)
Tuhia anō te 2r^{2}+5r+2 hei \left(2r^{2}+r\right)+\left(4r+2\right).
r\left(2r+1\right)+2\left(2r+1\right)
Tauwehea te r i te tuatahi me te 2 i te rōpū tuarua.
\left(2r+1\right)\left(r+2\right)
Whakatauwehea atu te kīanga pātahi 2r+1 mā te whakamahi i te āhuatanga tātai tohatoha.
r=-\frac{1}{2} r=-2
Hei kimi otinga whārite, me whakaoti te 2r+1=0 me te r+2=0.
2r^{2}+5r+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-5±\sqrt{5^{2}-4\times 2\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 5 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-5±\sqrt{25-4\times 2\times 2}}{2\times 2}
Pūrua 5.
r=\frac{-5±\sqrt{25-8\times 2}}{2\times 2}
Whakareatia -4 ki te 2.
r=\frac{-5±\sqrt{25-16}}{2\times 2}
Whakareatia -8 ki te 2.
r=\frac{-5±\sqrt{9}}{2\times 2}
Tāpiri 25 ki te -16.
r=\frac{-5±3}{2\times 2}
Tuhia te pūtakerua o te 9.
r=\frac{-5±3}{4}
Whakareatia 2 ki te 2.
r=-\frac{2}{4}
Nā, me whakaoti te whārite r=\frac{-5±3}{4} ina he tāpiri te ±. Tāpiri -5 ki te 3.
r=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
r=-\frac{8}{4}
Nā, me whakaoti te whārite r=\frac{-5±3}{4} ina he tango te ±. Tango 3 mai i -5.
r=-2
Whakawehe -8 ki te 4.
r=-\frac{1}{2} r=-2
Kua oti te whārite te whakatau.
2r^{2}+5r+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2r^{2}+5r+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
2r^{2}+5r=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{2r^{2}+5r}{2}=-\frac{2}{2}
Whakawehea ngā taha e rua ki te 2.
r^{2}+\frac{5}{2}r=-\frac{2}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
r^{2}+\frac{5}{2}r=-1
Whakawehe -2 ki te 2.
r^{2}+\frac{5}{2}r+\left(\frac{5}{4}\right)^{2}=-1+\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}+\frac{5}{2}r+\frac{25}{16}=-1+\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
r^{2}+\frac{5}{2}r+\frac{25}{16}=\frac{9}{16}
Tāpiri -1 ki te \frac{25}{16}.
\left(r+\frac{5}{4}\right)^{2}=\frac{9}{16}
Tauwehea r^{2}+\frac{5}{2}r+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r+\frac{5}{4}=\frac{3}{4} r+\frac{5}{4}=-\frac{3}{4}
Whakarūnātia.
r=-\frac{1}{2} r=-2
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}