Tauwehe
\left(q-1\right)\left(2q-5\right)
Aromātai
\left(q-1\right)\left(2q-5\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-7 ab=2\times 5=10
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2q^{2}+aq+bq+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-10 -2,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
-1-10=-11 -2-5=-7
Tātaihia te tapeke mō ia takirua.
a=-5 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(2q^{2}-5q\right)+\left(-2q+5\right)
Tuhia anō te 2q^{2}-7q+5 hei \left(2q^{2}-5q\right)+\left(-2q+5\right).
q\left(2q-5\right)-\left(2q-5\right)
Tauwehea te q i te tuatahi me te -1 i te rōpū tuarua.
\left(2q-5\right)\left(q-1\right)
Whakatauwehea atu te kīanga pātahi 2q-5 mā te whakamahi i te āhuatanga tātai tohatoha.
2q^{2}-7q+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
q=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 5}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 5}}{2\times 2}
Pūrua -7.
q=\frac{-\left(-7\right)±\sqrt{49-8\times 5}}{2\times 2}
Whakareatia -4 ki te 2.
q=\frac{-\left(-7\right)±\sqrt{49-40}}{2\times 2}
Whakareatia -8 ki te 5.
q=\frac{-\left(-7\right)±\sqrt{9}}{2\times 2}
Tāpiri 49 ki te -40.
q=\frac{-\left(-7\right)±3}{2\times 2}
Tuhia te pūtakerua o te 9.
q=\frac{7±3}{2\times 2}
Ko te tauaro o -7 ko 7.
q=\frac{7±3}{4}
Whakareatia 2 ki te 2.
q=\frac{10}{4}
Nā, me whakaoti te whārite q=\frac{7±3}{4} ina he tāpiri te ±. Tāpiri 7 ki te 3.
q=\frac{5}{2}
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
q=\frac{4}{4}
Nā, me whakaoti te whārite q=\frac{7±3}{4} ina he tango te ±. Tango 3 mai i 7.
q=1
Whakawehe 4 ki te 4.
2q^{2}-7q+5=2\left(q-\frac{5}{2}\right)\left(q-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{2} mō te x_{1} me te 1 mō te x_{2}.
2q^{2}-7q+5=2\times \frac{2q-5}{2}\left(q-1\right)
Tango \frac{5}{2} mai i q mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2q^{2}-7q+5=\left(2q-5\right)\left(q-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}