Tauwehe
2\left(p-1\right)\left(p+6\right)p^{3}
Aromātai
2\left(p-1\right)\left(p+6\right)p^{3}
Tohaina
Kua tāruatia ki te papatopenga
2\left(p^{5}+5p^{4}-6p^{3}\right)
Tauwehea te 2.
p^{3}\left(p^{2}+5p-6\right)
Whakaarohia te p^{5}+5p^{4}-6p^{3}. Tauwehea te p^{3}.
a+b=5 ab=1\left(-6\right)=-6
Whakaarohia te p^{2}+5p-6. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei p^{2}+ap+bp-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-1 b=6
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(p^{2}-p\right)+\left(6p-6\right)
Tuhia anō te p^{2}+5p-6 hei \left(p^{2}-p\right)+\left(6p-6\right).
p\left(p-1\right)+6\left(p-1\right)
Tauwehea te p i te tuatahi me te 6 i te rōpū tuarua.
\left(p-1\right)\left(p+6\right)
Whakatauwehea atu te kīanga pātahi p-1 mā te whakamahi i te āhuatanga tātai tohatoha.
2p^{3}\left(p-1\right)\left(p+6\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}