Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2p^{2}+4p-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-4±\sqrt{4^{2}-4\times 2\left(-5\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 4 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-4±\sqrt{16-4\times 2\left(-5\right)}}{2\times 2}
Pūrua 4.
p=\frac{-4±\sqrt{16-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
p=\frac{-4±\sqrt{16+40}}{2\times 2}
Whakareatia -8 ki te -5.
p=\frac{-4±\sqrt{56}}{2\times 2}
Tāpiri 16 ki te 40.
p=\frac{-4±2\sqrt{14}}{2\times 2}
Tuhia te pūtakerua o te 56.
p=\frac{-4±2\sqrt{14}}{4}
Whakareatia 2 ki te 2.
p=\frac{2\sqrt{14}-4}{4}
Nā, me whakaoti te whārite p=\frac{-4±2\sqrt{14}}{4} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{14}.
p=\frac{\sqrt{14}}{2}-1
Whakawehe -4+2\sqrt{14} ki te 4.
p=\frac{-2\sqrt{14}-4}{4}
Nā, me whakaoti te whārite p=\frac{-4±2\sqrt{14}}{4} ina he tango te ±. Tango 2\sqrt{14} mai i -4.
p=-\frac{\sqrt{14}}{2}-1
Whakawehe -4-2\sqrt{14} ki te 4.
p=\frac{\sqrt{14}}{2}-1 p=-\frac{\sqrt{14}}{2}-1
Kua oti te whārite te whakatau.
2p^{2}+4p-5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2p^{2}+4p-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
2p^{2}+4p=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
2p^{2}+4p=5
Tango -5 mai i 0.
\frac{2p^{2}+4p}{2}=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
p^{2}+\frac{4}{2}p=\frac{5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
p^{2}+2p=\frac{5}{2}
Whakawehe 4 ki te 2.
p^{2}+2p+1^{2}=\frac{5}{2}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}+2p+1=\frac{5}{2}+1
Pūrua 1.
p^{2}+2p+1=\frac{7}{2}
Tāpiri \frac{5}{2} ki te 1.
\left(p+1\right)^{2}=\frac{7}{2}
Tauwehea p^{2}+2p+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+1\right)^{2}}=\sqrt{\frac{7}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p+1=\frac{\sqrt{14}}{2} p+1=-\frac{\sqrt{14}}{2}
Whakarūnātia.
p=\frac{\sqrt{14}}{2}-1 p=-\frac{\sqrt{14}}{2}-1
Me tango 1 mai i ngā taha e rua o te whārite.