Tauwehe
2\left(p+1\right)\left(p+5\right)
Aromātai
2\left(p+1\right)\left(p+5\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(p^{2}+6p+5\right)
Tauwehea te 2.
a+b=6 ab=1\times 5=5
Whakaarohia te p^{2}+6p+5. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei p^{2}+ap+bp+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(p^{2}+p\right)+\left(5p+5\right)
Tuhia anō te p^{2}+6p+5 hei \left(p^{2}+p\right)+\left(5p+5\right).
p\left(p+1\right)+5\left(p+1\right)
Tauwehea te p i te tuatahi me te 5 i te rōpū tuarua.
\left(p+1\right)\left(p+5\right)
Whakatauwehea atu te kīanga pātahi p+1 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(p+1\right)\left(p+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
2p^{2}+12p+10=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
p=\frac{-12±\sqrt{12^{2}-4\times 2\times 10}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-12±\sqrt{144-4\times 2\times 10}}{2\times 2}
Pūrua 12.
p=\frac{-12±\sqrt{144-8\times 10}}{2\times 2}
Whakareatia -4 ki te 2.
p=\frac{-12±\sqrt{144-80}}{2\times 2}
Whakareatia -8 ki te 10.
p=\frac{-12±\sqrt{64}}{2\times 2}
Tāpiri 144 ki te -80.
p=\frac{-12±8}{2\times 2}
Tuhia te pūtakerua o te 64.
p=\frac{-12±8}{4}
Whakareatia 2 ki te 2.
p=-\frac{4}{4}
Nā, me whakaoti te whārite p=\frac{-12±8}{4} ina he tāpiri te ±. Tāpiri -12 ki te 8.
p=-1
Whakawehe -4 ki te 4.
p=-\frac{20}{4}
Nā, me whakaoti te whārite p=\frac{-12±8}{4} ina he tango te ±. Tango 8 mai i -12.
p=-5
Whakawehe -20 ki te 4.
2p^{2}+12p+10=2\left(p-\left(-1\right)\right)\left(p-\left(-5\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te -5 mō te x_{2}.
2p^{2}+12p+10=2\left(p+1\right)\left(p+5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}