Tauwehe
2\left(n-3\right)^{2}
Aromātai
2\left(n-3\right)^{2}
Tohaina
Kua tāruatia ki te papatopenga
2\left(n^{2}-6n+9\right)
Tauwehea te 2.
\left(n-3\right)^{2}
Whakaarohia te n^{2}-6n+9. Whakamahia te tikanga tātai pūrua pā, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, ina a=n, ina b=3.
2\left(n-3\right)^{2}
Me tuhi anō te kīanga whakatauwehe katoa.
factor(2n^{2}-12n+18)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(2,-12,18)=2
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
2\left(n^{2}-6n+9\right)
Tauwehea te 2.
\sqrt{9}=3
Kimihia te pūtakerua o te kīanga tau autō, 9.
2\left(n-3\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
2n^{2}-12n+18=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
Pūrua -12.
n=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
Whakareatia -4 ki te 2.
n=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
Whakareatia -8 ki te 18.
n=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
Tāpiri 144 ki te -144.
n=\frac{-\left(-12\right)±0}{2\times 2}
Tuhia te pūtakerua o te 0.
n=\frac{12±0}{2\times 2}
Ko te tauaro o -12 ko 12.
n=\frac{12±0}{4}
Whakareatia 2 ki te 2.
2n^{2}-12n+18=2\left(n-3\right)\left(n-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te 3 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}