Whakaoti mō n
n = \frac{\sqrt{19} + 3}{2} \approx 3.679449472
n=\frac{3-\sqrt{19}}{2}\approx -0.679449472
Tohaina
Kua tāruatia ki te papatopenga
2n^{2}-10n-5+4n=0
Me tāpiri te 4n ki ngā taha e rua.
2n^{2}-6n-5=0
Pahekotia te -10n me 4n, ka -6n.
n=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -6 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-5\right)}}{2\times 2}
Pūrua -6.
n=\frac{-\left(-6\right)±\sqrt{36-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
n=\frac{-\left(-6\right)±\sqrt{36+40}}{2\times 2}
Whakareatia -8 ki te -5.
n=\frac{-\left(-6\right)±\sqrt{76}}{2\times 2}
Tāpiri 36 ki te 40.
n=\frac{-\left(-6\right)±2\sqrt{19}}{2\times 2}
Tuhia te pūtakerua o te 76.
n=\frac{6±2\sqrt{19}}{2\times 2}
Ko te tauaro o -6 ko 6.
n=\frac{6±2\sqrt{19}}{4}
Whakareatia 2 ki te 2.
n=\frac{2\sqrt{19}+6}{4}
Nā, me whakaoti te whārite n=\frac{6±2\sqrt{19}}{4} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{19}.
n=\frac{\sqrt{19}+3}{2}
Whakawehe 6+2\sqrt{19} ki te 4.
n=\frac{6-2\sqrt{19}}{4}
Nā, me whakaoti te whārite n=\frac{6±2\sqrt{19}}{4} ina he tango te ±. Tango 2\sqrt{19} mai i 6.
n=\frac{3-\sqrt{19}}{2}
Whakawehe 6-2\sqrt{19} ki te 4.
n=\frac{\sqrt{19}+3}{2} n=\frac{3-\sqrt{19}}{2}
Kua oti te whārite te whakatau.
2n^{2}-10n-5+4n=0
Me tāpiri te 4n ki ngā taha e rua.
2n^{2}-6n-5=0
Pahekotia te -10n me 4n, ka -6n.
2n^{2}-6n=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2n^{2}-6n}{2}=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
n^{2}+\left(-\frac{6}{2}\right)n=\frac{5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
n^{2}-3n=\frac{5}{2}
Whakawehe -6 ki te 2.
n^{2}-3n+\left(-\frac{3}{2}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-3n+\frac{9}{4}=\frac{5}{2}+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-3n+\frac{9}{4}=\frac{19}{4}
Tāpiri \frac{5}{2} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n-\frac{3}{2}\right)^{2}=\frac{19}{4}
Tauwehea n^{2}-3n+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{3}{2}\right)^{2}}=\sqrt{\frac{19}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{3}{2}=\frac{\sqrt{19}}{2} n-\frac{3}{2}=-\frac{\sqrt{19}}{2}
Whakarūnātia.
n=\frac{\sqrt{19}+3}{2} n=\frac{3-\sqrt{19}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}