Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}=\frac{-144}{2}
Whakawehea ngā taha e rua ki te 2.
n^{2}=-72
Whakawehea te -144 ki te 2, kia riro ko -72.
n=6\sqrt{2}i n=-6\sqrt{2}i
Kua oti te whārite te whakatau.
n^{2}=\frac{-144}{2}
Whakawehea ngā taha e rua ki te 2.
n^{2}=-72
Whakawehea te -144 ki te 2, kia riro ko -72.
n^{2}+72=0
Me tāpiri te 72 ki ngā taha e rua.
n=\frac{0±\sqrt{0^{2}-4\times 72}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 72}}{2}
Pūrua 0.
n=\frac{0±\sqrt{-288}}{2}
Whakareatia -4 ki te 72.
n=\frac{0±12\sqrt{2}i}{2}
Tuhia te pūtakerua o te -288.
n=6\sqrt{2}i
Nā, me whakaoti te whārite n=\frac{0±12\sqrt{2}i}{2} ina he tāpiri te ±.
n=-6\sqrt{2}i
Nā, me whakaoti te whārite n=\frac{0±12\sqrt{2}i}{2} ina he tango te ±.
n=6\sqrt{2}i n=-6\sqrt{2}i
Kua oti te whārite te whakatau.