Whakaoti mō n
n=-6\sqrt{2}i\approx -0-8.485281374i
n=6\sqrt{2}i\approx 8.485281374i
Tohaina
Kua tāruatia ki te papatopenga
n^{2}=\frac{-144}{2}
Whakawehea ngā taha e rua ki te 2.
n^{2}=-72
Whakawehea te -144 ki te 2, kia riro ko -72.
n=6\sqrt{2}i n=-6\sqrt{2}i
Kua oti te whārite te whakatau.
n^{2}=\frac{-144}{2}
Whakawehea ngā taha e rua ki te 2.
n^{2}=-72
Whakawehea te -144 ki te 2, kia riro ko -72.
n^{2}+72=0
Me tāpiri te 72 ki ngā taha e rua.
n=\frac{0±\sqrt{0^{2}-4\times 72}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 72}}{2}
Pūrua 0.
n=\frac{0±\sqrt{-288}}{2}
Whakareatia -4 ki te 72.
n=\frac{0±12\sqrt{2}i}{2}
Tuhia te pūtakerua o te -288.
n=6\sqrt{2}i
Nā, me whakaoti te whārite n=\frac{0±12\sqrt{2}i}{2} ina he tāpiri te ±.
n=-6\sqrt{2}i
Nā, me whakaoti te whārite n=\frac{0±12\sqrt{2}i}{2} ina he tango te ±.
n=6\sqrt{2}i n=-6\sqrt{2}i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}