Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(n^{2}+3n-4\right)
Tauwehea te 2.
a+b=3 ab=1\left(-4\right)=-4
Whakaarohia te n^{2}+3n-4. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei n^{2}+an+bn-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,4 -2,2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
-1+4=3 -2+2=0
Tātaihia te tapeke mō ia takirua.
a=-1 b=4
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(n^{2}-n\right)+\left(4n-4\right)
Tuhia anō te n^{2}+3n-4 hei \left(n^{2}-n\right)+\left(4n-4\right).
n\left(n-1\right)+4\left(n-1\right)
Tauwehea te n i te tuatahi me te 4 i te rōpū tuarua.
\left(n-1\right)\left(n+4\right)
Whakatauwehea atu te kīanga pātahi n-1 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(n-1\right)\left(n+4\right)
Me tuhi anō te kīanga whakatauwehe katoa.
2n^{2}+6n-8=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-6±\sqrt{6^{2}-4\times 2\left(-8\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-6±\sqrt{36-4\times 2\left(-8\right)}}{2\times 2}
Pūrua 6.
n=\frac{-6±\sqrt{36-8\left(-8\right)}}{2\times 2}
Whakareatia -4 ki te 2.
n=\frac{-6±\sqrt{36+64}}{2\times 2}
Whakareatia -8 ki te -8.
n=\frac{-6±\sqrt{100}}{2\times 2}
Tāpiri 36 ki te 64.
n=\frac{-6±10}{2\times 2}
Tuhia te pūtakerua o te 100.
n=\frac{-6±10}{4}
Whakareatia 2 ki te 2.
n=\frac{4}{4}
Nā, me whakaoti te whārite n=\frac{-6±10}{4} ina he tāpiri te ±. Tāpiri -6 ki te 10.
n=1
Whakawehe 4 ki te 4.
n=-\frac{16}{4}
Nā, me whakaoti te whārite n=\frac{-6±10}{4} ina he tango te ±. Tango 10 mai i -6.
n=-4
Whakawehe -16 ki te 4.
2n^{2}+6n-8=2\left(n-1\right)\left(n-\left(-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te -4 mō te x_{2}.
2n^{2}+6n-8=2\left(n-1\right)\left(n+4\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.