Aromātai
392+44m-14m^{2}
Tauwehe
-14\left(m-\frac{11-\sqrt{1493}}{7}\right)\left(m-\frac{\sqrt{1493}+11}{7}\right)
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
2 m - 14 \quad \div \frac { 1 } { m ^ { 2 } - 3 m - 28 }
Tohaina
Kua tāruatia ki te papatopenga
2m-14\left(m^{2}-3m-28\right)
Whakawehe 14 ki te \frac{1}{m^{2}-3m-28} mā te whakarea 14 ki te tau huripoki o \frac{1}{m^{2}-3m-28}.
2m-\left(14m^{2}-42m-392\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 14 ki te m^{2}-3m-28.
2m-14m^{2}+42m+392
Hei kimi i te tauaro o 14m^{2}-42m-392, kimihia te tauaro o ia taurangi.
44m-14m^{2}+392
Pahekotia te 2m me 42m, ka 44m.
factor(2m-14\left(m^{2}-3m-28\right))
Whakawehe 14 ki te \frac{1}{m^{2}-3m-28} mā te whakarea 14 ki te tau huripoki o \frac{1}{m^{2}-3m-28}.
factor(2m-\left(14m^{2}-42m-392\right))
Whakamahia te āhuatanga tohatoha hei whakarea te 14 ki te m^{2}-3m-28.
factor(2m-14m^{2}+42m+392)
Hei kimi i te tauaro o 14m^{2}-42m-392, kimihia te tauaro o ia taurangi.
factor(44m-14m^{2}+392)
Pahekotia te 2m me 42m, ka 44m.
-14m^{2}+44m+392=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-44±\sqrt{44^{2}-4\left(-14\right)\times 392}}{2\left(-14\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-44±\sqrt{1936-4\left(-14\right)\times 392}}{2\left(-14\right)}
Pūrua 44.
m=\frac{-44±\sqrt{1936+56\times 392}}{2\left(-14\right)}
Whakareatia -4 ki te -14.
m=\frac{-44±\sqrt{1936+21952}}{2\left(-14\right)}
Whakareatia 56 ki te 392.
m=\frac{-44±\sqrt{23888}}{2\left(-14\right)}
Tāpiri 1936 ki te 21952.
m=\frac{-44±4\sqrt{1493}}{2\left(-14\right)}
Tuhia te pūtakerua o te 23888.
m=\frac{-44±4\sqrt{1493}}{-28}
Whakareatia 2 ki te -14.
m=\frac{4\sqrt{1493}-44}{-28}
Nā, me whakaoti te whārite m=\frac{-44±4\sqrt{1493}}{-28} ina he tāpiri te ±. Tāpiri -44 ki te 4\sqrt{1493}.
m=\frac{11-\sqrt{1493}}{7}
Whakawehe -44+4\sqrt{1493} ki te -28.
m=\frac{-4\sqrt{1493}-44}{-28}
Nā, me whakaoti te whārite m=\frac{-44±4\sqrt{1493}}{-28} ina he tango te ±. Tango 4\sqrt{1493} mai i -44.
m=\frac{\sqrt{1493}+11}{7}
Whakawehe -44-4\sqrt{1493} ki te -28.
-14m^{2}+44m+392=-14\left(m-\frac{11-\sqrt{1493}}{7}\right)\left(m-\frac{\sqrt{1493}+11}{7}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{11-\sqrt{1493}}{7} mō te x_{1} me te \frac{11+\sqrt{1493}}{7} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}