Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

m\left(2m-9\right)=0
Tauwehea te m.
m=0 m=\frac{9}{2}
Hei kimi otinga whārite, me whakaoti te m=0 me te 2m-9=0.
2m^{2}-9m=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -9 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-9\right)±9}{2\times 2}
Tuhia te pūtakerua o te \left(-9\right)^{2}.
m=\frac{9±9}{2\times 2}
Ko te tauaro o -9 ko 9.
m=\frac{9±9}{4}
Whakareatia 2 ki te 2.
m=\frac{18}{4}
Nā, me whakaoti te whārite m=\frac{9±9}{4} ina he tāpiri te ±. Tāpiri 9 ki te 9.
m=\frac{9}{2}
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
m=\frac{0}{4}
Nā, me whakaoti te whārite m=\frac{9±9}{4} ina he tango te ±. Tango 9 mai i 9.
m=0
Whakawehe 0 ki te 4.
m=\frac{9}{2} m=0
Kua oti te whārite te whakatau.
2m^{2}-9m=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2m^{2}-9m}{2}=\frac{0}{2}
Whakawehea ngā taha e rua ki te 2.
m^{2}-\frac{9}{2}m=\frac{0}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
m^{2}-\frac{9}{2}m=0
Whakawehe 0 ki te 2.
m^{2}-\frac{9}{2}m+\left(-\frac{9}{4}\right)^{2}=\left(-\frac{9}{4}\right)^{2}
Whakawehea te -\frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{4}. Nā, tāpiria te pūrua o te -\frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-\frac{9}{2}m+\frac{81}{16}=\frac{81}{16}
Pūruatia -\frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(m-\frac{9}{4}\right)^{2}=\frac{81}{16}
Tauwehea m^{2}-\frac{9}{2}m+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{9}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{9}{4}=\frac{9}{4} m-\frac{9}{4}=-\frac{9}{4}
Whakarūnātia.
m=\frac{9}{2} m=0
Me tāpiri \frac{9}{4} ki ngā taha e rua o te whārite.