Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=1 ab=2\left(-3\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2m^{2}+am+bm-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(2m^{2}-2m\right)+\left(3m-3\right)
Tuhia anō te 2m^{2}+m-3 hei \left(2m^{2}-2m\right)+\left(3m-3\right).
2m\left(m-1\right)+3\left(m-1\right)
Tauwehea te 2m i te tuatahi me te 3 i te rōpū tuarua.
\left(m-1\right)\left(2m+3\right)
Whakatauwehea atu te kīanga pātahi m-1 mā te whakamahi i te āhuatanga tātai tohatoha.
m=1 m=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te m-1=0 me te 2m+3=0.
2m^{2}+m-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-1±\sqrt{1^{2}-4\times 2\left(-3\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 1 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-1±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
Pūrua 1.
m=\frac{-1±\sqrt{1-8\left(-3\right)}}{2\times 2}
Whakareatia -4 ki te 2.
m=\frac{-1±\sqrt{1+24}}{2\times 2}
Whakareatia -8 ki te -3.
m=\frac{-1±\sqrt{25}}{2\times 2}
Tāpiri 1 ki te 24.
m=\frac{-1±5}{2\times 2}
Tuhia te pūtakerua o te 25.
m=\frac{-1±5}{4}
Whakareatia 2 ki te 2.
m=\frac{4}{4}
Nā, me whakaoti te whārite m=\frac{-1±5}{4} ina he tāpiri te ±. Tāpiri -1 ki te 5.
m=1
Whakawehe 4 ki te 4.
m=-\frac{6}{4}
Nā, me whakaoti te whārite m=\frac{-1±5}{4} ina he tango te ±. Tango 5 mai i -1.
m=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
m=1 m=-\frac{3}{2}
Kua oti te whārite te whakatau.
2m^{2}+m-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2m^{2}+m-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
2m^{2}+m=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
2m^{2}+m=3
Tango -3 mai i 0.
\frac{2m^{2}+m}{2}=\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
m^{2}+\frac{1}{2}m=\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
m^{2}+\frac{1}{2}m+\left(\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+\frac{1}{2}m+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}+\frac{1}{2}m+\frac{1}{16}=\frac{25}{16}
Tāpiri \frac{3}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(m+\frac{1}{4}\right)^{2}=\frac{25}{16}
Tauwehea m^{2}+\frac{1}{2}m+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+\frac{1}{4}=\frac{5}{4} m+\frac{1}{4}=-\frac{5}{4}
Whakarūnātia.
m=1 m=-\frac{3}{2}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.