Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

k\left(2k-1\right)
Tauwehea te k.
2k^{2}-k=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-\left(-1\right)±\sqrt{1}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-1\right)±1}{2\times 2}
Tuhia te pūtakerua o te 1.
k=\frac{1±1}{2\times 2}
Ko te tauaro o -1 ko 1.
k=\frac{1±1}{4}
Whakareatia 2 ki te 2.
k=\frac{2}{4}
Nā, me whakaoti te whārite k=\frac{1±1}{4} ina he tāpiri te ±. Tāpiri 1 ki te 1.
k=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
k=\frac{0}{4}
Nā, me whakaoti te whārite k=\frac{1±1}{4} ina he tango te ±. Tango 1 mai i 1.
k=0
Whakawehe 0 ki te 4.
2k^{2}-k=2\left(k-\frac{1}{2}\right)k
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{2} mō te x_{1} me te 0 mō te x_{2}.
2k^{2}-k=2\times \frac{2k-1}{2}k
Tango \frac{1}{2} mai i k mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2k^{2}-k=\left(2k-1\right)k
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.