Whakaoti mō k
k=\frac{\sqrt{34}}{2}+1\approx 3.915475947
k=-\frac{\sqrt{34}}{2}+1\approx -1.915475947
Tohaina
Kua tāruatia ki te papatopenga
2k^{2}-4k-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-15\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-15\right)}}{2\times 2}
Pūrua -4.
k=\frac{-\left(-4\right)±\sqrt{16-8\left(-15\right)}}{2\times 2}
Whakareatia -4 ki te 2.
k=\frac{-\left(-4\right)±\sqrt{16+120}}{2\times 2}
Whakareatia -8 ki te -15.
k=\frac{-\left(-4\right)±\sqrt{136}}{2\times 2}
Tāpiri 16 ki te 120.
k=\frac{-\left(-4\right)±2\sqrt{34}}{2\times 2}
Tuhia te pūtakerua o te 136.
k=\frac{4±2\sqrt{34}}{2\times 2}
Ko te tauaro o -4 ko 4.
k=\frac{4±2\sqrt{34}}{4}
Whakareatia 2 ki te 2.
k=\frac{2\sqrt{34}+4}{4}
Nā, me whakaoti te whārite k=\frac{4±2\sqrt{34}}{4} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{34}.
k=\frac{\sqrt{34}}{2}+1
Whakawehe 4+2\sqrt{34} ki te 4.
k=\frac{4-2\sqrt{34}}{4}
Nā, me whakaoti te whārite k=\frac{4±2\sqrt{34}}{4} ina he tango te ±. Tango 2\sqrt{34} mai i 4.
k=-\frac{\sqrt{34}}{2}+1
Whakawehe 4-2\sqrt{34} ki te 4.
k=\frac{\sqrt{34}}{2}+1 k=-\frac{\sqrt{34}}{2}+1
Kua oti te whārite te whakatau.
2k^{2}-4k-15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2k^{2}-4k-15-\left(-15\right)=-\left(-15\right)
Me tāpiri 15 ki ngā taha e rua o te whārite.
2k^{2}-4k=-\left(-15\right)
Mā te tango i te -15 i a ia ake anō ka toe ko te 0.
2k^{2}-4k=15
Tango -15 mai i 0.
\frac{2k^{2}-4k}{2}=\frac{15}{2}
Whakawehea ngā taha e rua ki te 2.
k^{2}+\left(-\frac{4}{2}\right)k=\frac{15}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
k^{2}-2k=\frac{15}{2}
Whakawehe -4 ki te 2.
k^{2}-2k+1=\frac{15}{2}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}-2k+1=\frac{17}{2}
Tāpiri \frac{15}{2} ki te 1.
\left(k-1\right)^{2}=\frac{17}{2}
Tauwehea k^{2}-2k+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-1\right)^{2}}=\sqrt{\frac{17}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k-1=\frac{\sqrt{34}}{2} k-1=-\frac{\sqrt{34}}{2}
Whakarūnātia.
k=\frac{\sqrt{34}}{2}+1 k=-\frac{\sqrt{34}}{2}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}