Tauwehe
2\left(k-10\right)\left(k+3\right)
Aromātai
2\left(k-10\right)\left(k+3\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(k^{2}-7k-30\right)
Tauwehea te 2.
a+b=-7 ab=1\left(-30\right)=-30
Whakaarohia te k^{2}-7k-30. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei k^{2}+ak+bk-30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-30 2,-15 3,-10 5,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Tātaihia te tapeke mō ia takirua.
a=-10 b=3
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(k^{2}-10k\right)+\left(3k-30\right)
Tuhia anō te k^{2}-7k-30 hei \left(k^{2}-10k\right)+\left(3k-30\right).
k\left(k-10\right)+3\left(k-10\right)
Tauwehea te k i te tuatahi me te 3 i te rōpū tuarua.
\left(k-10\right)\left(k+3\right)
Whakatauwehea atu te kīanga pātahi k-10 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(k-10\right)\left(k+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
2k^{2}-14k-60=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\left(-60\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-14\right)±\sqrt{196-4\times 2\left(-60\right)}}{2\times 2}
Pūrua -14.
k=\frac{-\left(-14\right)±\sqrt{196-8\left(-60\right)}}{2\times 2}
Whakareatia -4 ki te 2.
k=\frac{-\left(-14\right)±\sqrt{196+480}}{2\times 2}
Whakareatia -8 ki te -60.
k=\frac{-\left(-14\right)±\sqrt{676}}{2\times 2}
Tāpiri 196 ki te 480.
k=\frac{-\left(-14\right)±26}{2\times 2}
Tuhia te pūtakerua o te 676.
k=\frac{14±26}{2\times 2}
Ko te tauaro o -14 ko 14.
k=\frac{14±26}{4}
Whakareatia 2 ki te 2.
k=\frac{40}{4}
Nā, me whakaoti te whārite k=\frac{14±26}{4} ina he tāpiri te ±. Tāpiri 14 ki te 26.
k=10
Whakawehe 40 ki te 4.
k=-\frac{12}{4}
Nā, me whakaoti te whārite k=\frac{14±26}{4} ina he tango te ±. Tango 26 mai i 14.
k=-3
Whakawehe -12 ki te 4.
2k^{2}-14k-60=2\left(k-10\right)\left(k-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 10 mō te x_{1} me te -3 mō te x_{2}.
2k^{2}-14k-60=2\left(k-10\right)\left(k+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}