Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

f\left(2f+5\right)
Tauwehea te f.
2f^{2}+5f=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
f=\frac{-5±\sqrt{5^{2}}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
f=\frac{-5±5}{2\times 2}
Tuhia te pūtakerua o te 5^{2}.
f=\frac{-5±5}{4}
Whakareatia 2 ki te 2.
f=\frac{0}{4}
Nā, me whakaoti te whārite f=\frac{-5±5}{4} ina he tāpiri te ±. Tāpiri -5 ki te 5.
f=0
Whakawehe 0 ki te 4.
f=-\frac{10}{4}
Nā, me whakaoti te whārite f=\frac{-5±5}{4} ina he tango te ±. Tango 5 mai i -5.
f=-\frac{5}{2}
Whakahekea te hautanga \frac{-10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2f^{2}+5f=2f\left(f-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
2f^{2}+5f=2f\left(f+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2f^{2}+5f=2f\times \frac{2f+5}{2}
Tāpiri \frac{5}{2} ki te f mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2f^{2}+5f=f\left(2f+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.