Whakaoti mō c
c = \frac{41}{4} = 10\frac{1}{4} = 10.25
c=10
Tohaina
Kua tāruatia ki te papatopenga
\left(2c-17\right)^{2}=\left(\sqrt{-121+13c}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4c^{2}-68c+289=\left(\sqrt{-121+13c}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2c-17\right)^{2}.
4c^{2}-68c+289=-121+13c
Tātaihia te \sqrt{-121+13c} mā te pū o 2, kia riro ko -121+13c.
4c^{2}-68c+289-\left(-121\right)=13c
Tangohia te -121 mai i ngā taha e rua.
4c^{2}-68c+289+121=13c
Ko te tauaro o -121 ko 121.
4c^{2}-68c+289+121-13c=0
Tangohia te 13c mai i ngā taha e rua.
4c^{2}-68c+410-13c=0
Tāpirihia te 289 ki te 121, ka 410.
4c^{2}-81c+410=0
Pahekotia te -68c me -13c, ka -81c.
c=\frac{-\left(-81\right)±\sqrt{\left(-81\right)^{2}-4\times 4\times 410}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -81 mō b, me 410 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-81\right)±\sqrt{6561-4\times 4\times 410}}{2\times 4}
Pūrua -81.
c=\frac{-\left(-81\right)±\sqrt{6561-16\times 410}}{2\times 4}
Whakareatia -4 ki te 4.
c=\frac{-\left(-81\right)±\sqrt{6561-6560}}{2\times 4}
Whakareatia -16 ki te 410.
c=\frac{-\left(-81\right)±\sqrt{1}}{2\times 4}
Tāpiri 6561 ki te -6560.
c=\frac{-\left(-81\right)±1}{2\times 4}
Tuhia te pūtakerua o te 1.
c=\frac{81±1}{2\times 4}
Ko te tauaro o -81 ko 81.
c=\frac{81±1}{8}
Whakareatia 2 ki te 4.
c=\frac{82}{8}
Nā, me whakaoti te whārite c=\frac{81±1}{8} ina he tāpiri te ±. Tāpiri 81 ki te 1.
c=\frac{41}{4}
Whakahekea te hautanga \frac{82}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
c=\frac{80}{8}
Nā, me whakaoti te whārite c=\frac{81±1}{8} ina he tango te ±. Tango 1 mai i 81.
c=10
Whakawehe 80 ki te 8.
c=\frac{41}{4} c=10
Kua oti te whārite te whakatau.
2\times \frac{41}{4}-17=\sqrt{-121+13\times \frac{41}{4}}
Whakakapia te \frac{41}{4} mō te c i te whārite 2c-17=\sqrt{-121+13c}.
\frac{7}{2}=\frac{7}{2}
Whakarūnātia. Ko te uara c=\frac{41}{4} kua ngata te whārite.
2\times 10-17=\sqrt{-121+13\times 10}
Whakakapia te 10 mō te c i te whārite 2c-17=\sqrt{-121+13c}.
3=3
Whakarūnātia. Ko te uara c=10 kua ngata te whārite.
c=\frac{41}{4} c=10
Rārangihia ngā rongoā katoa o 2c-17=\sqrt{13c-121}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}