Whakaoti mō b
b=\frac{\sqrt{15}-3}{2}\approx 0.436491673
b=\frac{-\sqrt{15}-3}{2}\approx -3.436491673
Tohaina
Kua tāruatia ki te papatopenga
2b^{2}+6b-1=2
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
2b^{2}+6b-1-2=2-2
Me tango 2 mai i ngā taha e rua o te whārite.
2b^{2}+6b-1-2=0
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
2b^{2}+6b-3=0
Tango 2 mai i -1.
b=\frac{-6±\sqrt{6^{2}-4\times 2\left(-3\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 6 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-6±\sqrt{36-4\times 2\left(-3\right)}}{2\times 2}
Pūrua 6.
b=\frac{-6±\sqrt{36-8\left(-3\right)}}{2\times 2}
Whakareatia -4 ki te 2.
b=\frac{-6±\sqrt{36+24}}{2\times 2}
Whakareatia -8 ki te -3.
b=\frac{-6±\sqrt{60}}{2\times 2}
Tāpiri 36 ki te 24.
b=\frac{-6±2\sqrt{15}}{2\times 2}
Tuhia te pūtakerua o te 60.
b=\frac{-6±2\sqrt{15}}{4}
Whakareatia 2 ki te 2.
b=\frac{2\sqrt{15}-6}{4}
Nā, me whakaoti te whārite b=\frac{-6±2\sqrt{15}}{4} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{15}.
b=\frac{\sqrt{15}-3}{2}
Whakawehe -6+2\sqrt{15} ki te 4.
b=\frac{-2\sqrt{15}-6}{4}
Nā, me whakaoti te whārite b=\frac{-6±2\sqrt{15}}{4} ina he tango te ±. Tango 2\sqrt{15} mai i -6.
b=\frac{-\sqrt{15}-3}{2}
Whakawehe -6-2\sqrt{15} ki te 4.
b=\frac{\sqrt{15}-3}{2} b=\frac{-\sqrt{15}-3}{2}
Kua oti te whārite te whakatau.
2b^{2}+6b-1=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2b^{2}+6b-1-\left(-1\right)=2-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
2b^{2}+6b=2-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
2b^{2}+6b=3
Tango -1 mai i 2.
\frac{2b^{2}+6b}{2}=\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
b^{2}+\frac{6}{2}b=\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
b^{2}+3b=\frac{3}{2}
Whakawehe 6 ki te 2.
b^{2}+3b+\left(\frac{3}{2}\right)^{2}=\frac{3}{2}+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}+3b+\frac{9}{4}=\frac{3}{2}+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}+3b+\frac{9}{4}=\frac{15}{4}
Tāpiri \frac{3}{2} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(b+\frac{3}{2}\right)^{2}=\frac{15}{4}
Tauwehea b^{2}+3b+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{3}{2}\right)^{2}}=\sqrt{\frac{15}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b+\frac{3}{2}=\frac{\sqrt{15}}{2} b+\frac{3}{2}=-\frac{\sqrt{15}}{2}
Whakarūnātia.
b=\frac{\sqrt{15}-3}{2} b=\frac{-\sqrt{15}-3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}