Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

b^{2}+b-6=0
Whakawehea ngā taha e rua ki te 2.
a+b=1 ab=1\left(-6\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei b^{2}+ab+bb-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(b^{2}-2b\right)+\left(3b-6\right)
Tuhia anō te b^{2}+b-6 hei \left(b^{2}-2b\right)+\left(3b-6\right).
b\left(b-2\right)+3\left(b-2\right)
Tauwehea te b i te tuatahi me te 3 i te rōpū tuarua.
\left(b-2\right)\left(b+3\right)
Whakatauwehea atu te kīanga pātahi b-2 mā te whakamahi i te āhuatanga tātai tohatoha.
b=2 b=-3
Hei kimi otinga whārite, me whakaoti te b-2=0 me te b+3=0.
2b^{2}+2b-12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-2±\sqrt{2^{2}-4\times 2\left(-12\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 2 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-2±\sqrt{4-4\times 2\left(-12\right)}}{2\times 2}
Pūrua 2.
b=\frac{-2±\sqrt{4-8\left(-12\right)}}{2\times 2}
Whakareatia -4 ki te 2.
b=\frac{-2±\sqrt{4+96}}{2\times 2}
Whakareatia -8 ki te -12.
b=\frac{-2±\sqrt{100}}{2\times 2}
Tāpiri 4 ki te 96.
b=\frac{-2±10}{2\times 2}
Tuhia te pūtakerua o te 100.
b=\frac{-2±10}{4}
Whakareatia 2 ki te 2.
b=\frac{8}{4}
Nā, me whakaoti te whārite b=\frac{-2±10}{4} ina he tāpiri te ±. Tāpiri -2 ki te 10.
b=2
Whakawehe 8 ki te 4.
b=-\frac{12}{4}
Nā, me whakaoti te whārite b=\frac{-2±10}{4} ina he tango te ±. Tango 10 mai i -2.
b=-3
Whakawehe -12 ki te 4.
b=2 b=-3
Kua oti te whārite te whakatau.
2b^{2}+2b-12=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2b^{2}+2b-12-\left(-12\right)=-\left(-12\right)
Me tāpiri 12 ki ngā taha e rua o te whārite.
2b^{2}+2b=-\left(-12\right)
Mā te tango i te -12 i a ia ake anō ka toe ko te 0.
2b^{2}+2b=12
Tango -12 mai i 0.
\frac{2b^{2}+2b}{2}=\frac{12}{2}
Whakawehea ngā taha e rua ki te 2.
b^{2}+\frac{2}{2}b=\frac{12}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
b^{2}+b=\frac{12}{2}
Whakawehe 2 ki te 2.
b^{2}+b=6
Whakawehe 12 ki te 2.
b^{2}+b+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}+b+\frac{1}{4}=6+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}+b+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(b+\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea b^{2}+b+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b+\frac{1}{2}=\frac{5}{2} b+\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
b=2 b=-3
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.