Tauwehe
2ab\left(c-5\right)\left(c+1\right)\left(c+5\right)
Aromātai
2ab\left(c+1\right)\left(c^{2}-25\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(abc^{3}+abc^{2}-25abc-25ab\right)
Tauwehea te 2.
ab\left(c^{3}+c^{2}-25c-25\right)
Whakaarohia te abc^{3}+abc^{2}-25abc-25ab. Tauwehea te ab.
c^{2}\left(c+1\right)-25\left(c+1\right)
Whakaarohia te c^{3}+c^{2}-25c-25. Mahia te whakarōpūtanga c^{3}+c^{2}-25c-25=\left(c^{3}+c^{2}\right)+\left(-25c-25\right), ka whakatauwehea atu c^{2} i te tuatahi me -25 i te rōpū tuarua.
\left(c+1\right)\left(c^{2}-25\right)
Whakatauwehea atu te kīanga pātahi c+1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(c-5\right)\left(c+5\right)
Whakaarohia te c^{2}-25. Tuhia anō te c^{2}-25 hei c^{2}-5^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
2ab\left(c+1\right)\left(c-5\right)\left(c+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}