Whakaoti mō a
a=-6n-14
Whakaoti mō n
n=-\frac{a}{6}-\frac{7}{3}
Tohaina
Kua tāruatia ki te papatopenga
2a-28-4a=12n
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 7+a.
-2a-28=12n
Pahekotia te 2a me -4a, ka -2a.
-2a=12n+28
Me tāpiri te 28 ki ngā taha e rua.
\frac{-2a}{-2}=\frac{12n+28}{-2}
Whakawehea ngā taha e rua ki te -2.
a=\frac{12n+28}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
a=-6n-14
Whakawehe 12n+28 ki te -2.
2a-28-4a=12n
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 7+a.
-2a-28=12n
Pahekotia te 2a me -4a, ka -2a.
12n=-2a-28
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{12n}{12}=\frac{-2a-28}{12}
Whakawehea ngā taha e rua ki te 12.
n=\frac{-2a-28}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
n=-\frac{a}{6}-\frac{7}{3}
Whakawehe -2a-28 ki te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}