Whakaoti mō a
a=-1
a=3
Tohaina
Kua tāruatia ki te papatopenga
2a-1=a^{2}-4
Whakaarohia te \left(a-2\right)\left(a+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
2a-1-a^{2}=-4
Tangohia te a^{2} mai i ngā taha e rua.
2a-1-a^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
2a+3-a^{2}=0
Tāpirihia te -1 ki te 4, ka 3.
-a^{2}+2a+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 2 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Pūrua 2.
a=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
a=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Whakareatia 4 ki te 3.
a=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Tāpiri 4 ki te 12.
a=\frac{-2±4}{2\left(-1\right)}
Tuhia te pūtakerua o te 16.
a=\frac{-2±4}{-2}
Whakareatia 2 ki te -1.
a=\frac{2}{-2}
Nā, me whakaoti te whārite a=\frac{-2±4}{-2} ina he tāpiri te ±. Tāpiri -2 ki te 4.
a=-1
Whakawehe 2 ki te -2.
a=-\frac{6}{-2}
Nā, me whakaoti te whārite a=\frac{-2±4}{-2} ina he tango te ±. Tango 4 mai i -2.
a=3
Whakawehe -6 ki te -2.
a=-1 a=3
Kua oti te whārite te whakatau.
2a-1=a^{2}-4
Whakaarohia te \left(a-2\right)\left(a+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
2a-1-a^{2}=-4
Tangohia te a^{2} mai i ngā taha e rua.
2a-a^{2}=-4+1
Me tāpiri te 1 ki ngā taha e rua.
2a-a^{2}=-3
Tāpirihia te -4 ki te 1, ka -3.
-a^{2}+2a=-3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-a^{2}+2a}{-1}=-\frac{3}{-1}
Whakawehea ngā taha e rua ki te -1.
a^{2}+\frac{2}{-1}a=-\frac{3}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
a^{2}-2a=-\frac{3}{-1}
Whakawehe 2 ki te -1.
a^{2}-2a=3
Whakawehe -3 ki te -1.
a^{2}-2a+1=3+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-2a+1=4
Tāpiri 3 ki te 1.
\left(a-1\right)^{2}=4
Tauwehea a^{2}-2a+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-1=2 a-1=-2
Whakarūnātia.
a=3 a=-1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}