Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2a^{6}\right)^{1}\times \frac{1}{a^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
2^{1}\left(a^{6}\right)^{1}\times \frac{1}{1}\times \frac{1}{a^{4}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
2^{1}\times \frac{1}{1}\left(a^{6}\right)^{1}\times \frac{1}{a^{4}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
2^{1}\times \frac{1}{1}a^{6}a^{4\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
2^{1}\times \frac{1}{1}a^{6}a^{-4}
Whakareatia 4 ki te -1.
2^{1}\times \frac{1}{1}a^{6-4}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
2^{1}\times \frac{1}{1}a^{2}
Tāpirihia ngā taupū 6 me -4.
2\times \frac{1}{1}a^{2}
Hīkina te 2 ki te pū 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2}{1}a^{6-4})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{2})
Mahia ngā tātaitanga.
2\times 2a^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
4a^{1}
Mahia ngā tātaitanga.
4a
Mō tētahi kupu t, t^{1}=t.