Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 1, ā, ka wehea e q te whakarea arahanga 2. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
2a^{2}-a-1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te 2a^{3}-3a^{2}+1 ki te a-1, kia riro ko 2a^{2}-a-1. Whakaotihia te whārite ina ōrite te hua ki te 0.
a=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te -1 mō te b, me te -1 mō te c i te ture pūrua.
a=\frac{1±3}{4}
Mahia ngā tātaitai.
a=-\frac{1}{2} a=1
Whakaotia te whārite 2a^{2}-a-1=0 ina he tōrunga te ±, ina he tōraro te ±.
a=1 a=-\frac{1}{2}
Rārangitia ngā otinga katoa i kitea.