Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2a^{2}+8a+6=\frac{5}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
2a^{2}+8a+6-\frac{5}{2}=\frac{5}{2}-\frac{5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
2a^{2}+8a+6-\frac{5}{2}=0
Mā te tango i te \frac{5}{2} i a ia ake anō ka toe ko te 0.
2a^{2}+8a+\frac{7}{2}=0
Tango \frac{5}{2} mai i 6.
a=\frac{-8±\sqrt{8^{2}-4\times 2\times \frac{7}{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 8 mō b, me \frac{7}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-8±\sqrt{64-4\times 2\times \frac{7}{2}}}{2\times 2}
Pūrua 8.
a=\frac{-8±\sqrt{64-8\times \frac{7}{2}}}{2\times 2}
Whakareatia -4 ki te 2.
a=\frac{-8±\sqrt{64-28}}{2\times 2}
Whakareatia -8 ki te \frac{7}{2}.
a=\frac{-8±\sqrt{36}}{2\times 2}
Tāpiri 64 ki te -28.
a=\frac{-8±6}{2\times 2}
Tuhia te pūtakerua o te 36.
a=\frac{-8±6}{4}
Whakareatia 2 ki te 2.
a=-\frac{2}{4}
Nā, me whakaoti te whārite a=\frac{-8±6}{4} ina he tāpiri te ±. Tāpiri -8 ki te 6.
a=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a=-\frac{14}{4}
Nā, me whakaoti te whārite a=\frac{-8±6}{4} ina he tango te ±. Tango 6 mai i -8.
a=-\frac{7}{2}
Whakahekea te hautanga \frac{-14}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a=-\frac{1}{2} a=-\frac{7}{2}
Kua oti te whārite te whakatau.
2a^{2}+8a+6=\frac{5}{2}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2a^{2}+8a+6-6=\frac{5}{2}-6
Me tango 6 mai i ngā taha e rua o te whārite.
2a^{2}+8a=\frac{5}{2}-6
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
2a^{2}+8a=-\frac{7}{2}
Tango 6 mai i \frac{5}{2}.
\frac{2a^{2}+8a}{2}=-\frac{\frac{7}{2}}{2}
Whakawehea ngā taha e rua ki te 2.
a^{2}+\frac{8}{2}a=-\frac{\frac{7}{2}}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
a^{2}+4a=-\frac{\frac{7}{2}}{2}
Whakawehe 8 ki te 2.
a^{2}+4a=-\frac{7}{4}
Whakawehe -\frac{7}{2} ki te 2.
a^{2}+4a+2^{2}=-\frac{7}{4}+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+4a+4=-\frac{7}{4}+4
Pūrua 2.
a^{2}+4a+4=\frac{9}{4}
Tāpiri -\frac{7}{4} ki te 4.
\left(a+2\right)^{2}=\frac{9}{4}
Tauwehea a^{2}+4a+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+2=\frac{3}{2} a+2=-\frac{3}{2}
Whakarūnātia.
a=-\frac{1}{2} a=-\frac{7}{2}
Me tango 2 mai i ngā taha e rua o te whārite.