Whakaoti mō a
a=-\frac{c}{2}-\frac{5b}{2}+50
Whakaoti mō b
b=-\frac{c}{5}-\frac{2a}{5}+20
Tohaina
Kua tāruatia ki te papatopenga
2a+c=100-5b
Tangohia te 5b mai i ngā taha e rua.
2a=100-5b-c
Tangohia te c mai i ngā taha e rua.
2a=100-c-5b
He hanga arowhānui tō te whārite.
\frac{2a}{2}=\frac{100-c-5b}{2}
Whakawehea ngā taha e rua ki te 2.
a=\frac{100-c-5b}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
a=-\frac{c}{2}-\frac{5b}{2}+50
Whakawehe 100-5b-c ki te 2.
5b+c=100-2a
Tangohia te 2a mai i ngā taha e rua.
5b=100-2a-c
Tangohia te c mai i ngā taha e rua.
5b=100-c-2a
He hanga arowhānui tō te whārite.
\frac{5b}{5}=\frac{100-c-2a}{5}
Whakawehea ngā taha e rua ki te 5.
b=\frac{100-c-2a}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
b=-\frac{c}{5}-\frac{2a}{5}+20
Whakawehe 100-2a-c ki te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}