Whakaoti mō P
\left\{\begin{matrix}\\P=0\text{, }&\text{unconditionally}\\P\in \mathrm{R}\text{, }&T=\frac{100\ln(2)}{7}\end{matrix}\right.
Whakaoti mō T
\left\{\begin{matrix}\\T=\frac{100\ln(2)}{7}\text{, }&\text{unconditionally}\\T\in \mathrm{R}\text{, }&P=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
2P-Pe^{0.07T}=0
Tangohia te Pe^{0.07T} mai i ngā taha e rua.
-Pe^{0.07T}+2P=0
Whakaraupapatia anō ngā kīanga tau.
\left(-e^{0.07T}+2\right)P=0
Pahekotia ngā kīanga tau katoa e whai ana i te P.
\left(2-e^{\frac{7T}{100}}\right)P=0
He hanga arowhānui tō te whārite.
P=0
Whakawehe 0 ki te 2-e^{0.07T}.
Pe^{0.07T}=2P
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
e^{0.07T}=2
Whakawehea ngā taha e rua ki te P.
\log(e^{0.07T})=\log(2)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
0.07T\log(e)=\log(2)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
0.07T=\frac{\log(2)}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
0.07T=\log_{e}\left(2\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
T=\frac{\ln(2)}{0.07}
Whakawehea ngā taha e rua o te whārite ki te 0.07, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}