Aromātai
\frac{13}{15}-x
Whakaroha
\frac{13}{15}-x
Graph
Tohaina
Kua tāruatia ki te papatopenga
2-x-\left(\frac{4}{5}+\frac{3}{9}\right)
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2-x-\left(\frac{4}{5}+\frac{1}{3}\right)
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
2-x-\left(\frac{12}{15}+\frac{5}{15}\right)
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{4}{5} me \frac{1}{3} ki te hautau me te tautūnga 15.
2-x-\frac{12+5}{15}
Tā te mea he rite te tauraro o \frac{12}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-x-\frac{17}{15}
Tāpirihia te 12 ki te 5, ka 17.
\frac{30}{15}-x-\frac{17}{15}
Me tahuri te 2 ki te hautau \frac{30}{15}.
\frac{30-17}{15}-x
Tā te mea he rite te tauraro o \frac{30}{15} me \frac{17}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{13}{15}-x
Tangohia te 17 i te 30, ka 13.
2-x-\left(\frac{4}{5}+\frac{3}{9}\right)
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2-x-\left(\frac{4}{5}+\frac{1}{3}\right)
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
2-x-\left(\frac{12}{15}+\frac{5}{15}\right)
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{4}{5} me \frac{1}{3} ki te hautau me te tautūnga 15.
2-x-\frac{12+5}{15}
Tā te mea he rite te tauraro o \frac{12}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-x-\frac{17}{15}
Tāpirihia te 12 ki te 5, ka 17.
\frac{30}{15}-x-\frac{17}{15}
Me tahuri te 2 ki te hautau \frac{30}{15}.
\frac{30-17}{15}-x
Tā te mea he rite te tauraro o \frac{30}{15} me \frac{17}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{13}{15}-x
Tangohia te 17 i te 30, ka 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}