Tauwehe
\left(1-a\right)\left(a+2\right)
Aromātai
\left(1-a\right)\left(a+2\right)
Tohaina
Kua tāruatia ki te papatopenga
-a^{2}-a+2
Whakarea ka paheko i ngā kīanga tau ōrite.
p+q=-1 pq=-2=-2
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -a^{2}+pa+qa+2. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
p=1 q=-2
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōraro te p+q, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-a^{2}+a\right)+\left(-2a+2\right)
Tuhia anō te -a^{2}-a+2 hei \left(-a^{2}+a\right)+\left(-2a+2\right).
a\left(-a+1\right)+2\left(-a+1\right)
Tauwehea te a i te tuatahi me te 2 i te rōpū tuarua.
\left(-a+1\right)\left(a+2\right)
Whakatauwehea atu te kīanga pātahi -a+1 mā te whakamahi i te āhuatanga tātai tohatoha.
2-a-a^{2}
Whakareatia te a ki te a, ka a^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}