Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2-3x\left(4-x\right)-x^{2}=-16
Tangohia te x^{2} mai i ngā taha e rua.
2-3x\left(4-x\right)-x^{2}+16=0
Me tāpiri te 16 ki ngā taha e rua.
2-12x+3x^{2}-x^{2}+16=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te 4-x.
2-12x+2x^{2}+16=0
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
18-12x+2x^{2}=0
Tāpirihia te 2 ki te 16, ka 18.
9-6x+x^{2}=0
Whakawehea ngā taha e rua ki te 2.
x^{2}-6x+9=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-6 ab=1\times 9=9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-9 -3,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 9.
-1-9=-10 -3-3=-6
Tātaihia te tapeke mō ia takirua.
a=-3 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Tuhia anō te x^{2}-6x+9 hei \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-3\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-3\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=3
Hei kimi i te otinga whārite, whakaotia te x-3=0.
2-3x\left(4-x\right)-x^{2}=-16
Tangohia te x^{2} mai i ngā taha e rua.
2-3x\left(4-x\right)-x^{2}+16=0
Me tāpiri te 16 ki ngā taha e rua.
2-12x+3x^{2}-x^{2}+16=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te 4-x.
2-12x+2x^{2}+16=0
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
18-12x+2x^{2}=0
Tāpirihia te 2 ki te 16, ka 18.
2x^{2}-12x+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -12 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
Whakareatia -8 ki te 18.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
Tāpiri 144 ki te -144.
x=-\frac{-12}{2\times 2}
Tuhia te pūtakerua o te 0.
x=\frac{12}{2\times 2}
Ko te tauaro o -12 ko 12.
x=\frac{12}{4}
Whakareatia 2 ki te 2.
x=3
Whakawehe 12 ki te 4.
2-3x\left(4-x\right)-x^{2}=-16
Tangohia te x^{2} mai i ngā taha e rua.
2-12x+3x^{2}-x^{2}=-16
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te 4-x.
2-12x+2x^{2}=-16
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
-12x+2x^{2}=-16-2
Tangohia te 2 mai i ngā taha e rua.
-12x+2x^{2}=-18
Tangohia te 2 i te -16, ka -18.
2x^{2}-12x=-18
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}-12x}{2}=-\frac{18}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{18}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-6x=-\frac{18}{2}
Whakawehe -12 ki te 2.
x^{2}-6x=-9
Whakawehe -18 ki te 2.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-9+9
Pūrua -3.
x^{2}-6x+9=0
Tāpiri -9 ki te 9.
\left(x-3\right)^{2}=0
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=0 x-3=0
Whakarūnātia.
x=3 x=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=3
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}